d PROTOCOL MANUAL

Innovative I/O Since 1977
Chapter 3
Instructions 3-1
Overview 3-1
Setup 3-16
Delay 3-20
Station Type 3-22
Module Position Configuration 3-24
Communication Protocol 3-28
Watchdog 3-32
Timer Resolution 3-44
Response Tags 3-46
Error Message Control 3-50
Battery Backed 3-52
Variable Addressing 3-54
Digital inputs 3-59
Introduction 3-60
Status 3-62
Pulse Duration 3-64
Pulse Counting 3-72
Edge Detection 3-76
Digital Outputs 3-81
Introduction 3-82
Status 3-84
Modifiers 3-88
Pulses 3-98
Analog Inputs 3-103
Introduction 3-104
Input Value 3-108
Offsets 3-110
Gains (Slopes) 3-114
Range Limits 3-118
Minimum/ Maximum Values 3-122
Averages 3-124
Temperature 3-130
Analog Outputs 3-135
Introduction 3-136
Status 3-138
Waveform Introduction 3-144
Waveform 3-148
Waveforms (Improved) 3-152
Serial I/O 3-157
Introduction 3-157
Baud Rate 3-158
Host to Slave 3-160
Message for Host 3-162

Appendices:

A Position Field
B Checksums
C Analog input conversions
D Analog output conversions
E Hex/ Decimal conversions
F Third party software list
G The basic driver
H Hex/ Decimal/ ASCII table
I $\mathrm{Hex} /$ Decimal table
J MAGIC

INTRODUCTION

I/O Plexers are remote I/O devices controlled by instructions sent from a Host computer over a serial communications line. The control communication protocol is that of speak-only-when-spoken-to. Only the host can initiate a response from a remotely located I/O plexer. In order to confirm communication link operation, all instructions return either an acknowledgment or an acknowledgment with data. All messages sent by the host must be made up of printable ASCII characters; they are the only characters recognized by the I/O plexer. Each I/O Plexer has a unique Master Control, Master Digital, Master Analog and Digital expander 1 address. Only the addressed I/O Plexer responds to an instruction.

ADDRESS DECODING		POSSIBLE ADDRESSES OF I/O PLEXER FUNCTIONS
Incoming Instruction	>>>>	MC-Master Control address
	>>>>	MD-Master Digital address
	>>>>	MA-Master Analog address
	>>>>	DE-Digital Expander 1 address
	>>>>	MF-Master Future address

This addressing scheme is used to allow the I/O Plexer to access both digital and analog modules as well as serial I/O on the same physical chassis.

When dealing with a system equipped with a digital expander 1 simply treat it as if it were a normal Master Digital address.

Refer to section 2 of this manual for communication details when making the I/O Plexer to host computer connections.

This instruction/ response interchange is handled by the host computer in a variety of ways.

Instructions could be sent using a terminal emulation package such as PROCOMM ${ }^{\mathrm{TM}}$ or HyperACCESS ${ }^{\mathrm{TM}}$. With these programs, the operator would hand-build and enter the actual instruction string directly to the I/O Plexer. This would be impractical for normal operation but is good for debugging and experimentation.

The next higher level of interaction between the Host and I/O Plexer would be the MAGIC disk included with each copy of this manual. This menu driven program guides the user through building any instruction, sends that instruction to the I/O Plexer, and then displays the corresponding response. Magic disk is an excellent tool for experimentation and debugging hardware as well as software. However this program is not designed for continuous, hands-off, operation. For details concerning the MAGIC disk, see appendix J.

The above methods provide system design/ troubleshooting help but do not offer automated operation. Since acquiring data and/ or implementing control decisions is the real purpose of the I/O Plexer, the host computer needs an algorithm to follow.

This algorithm directs the Host to poll the I/O Plexer for the required information. Once acquired, this data is manipulated inside the host. Control decisions, if any, are then made. Based upon these decisions, instructions are sent to the I/O Plexer to manipulate the correct outputs. Acquired data may be stored or dealt with graphically and control decisions may be changed based on external stimuli such as operator input or time of day.

There are two main types of programs a Host can run; third party software or user written programs.

Third party software comes pre-written to accomplish a specific set of goals. Of the dozens of different packages, each has its strong and weak points. The user need only choose the package which best suits his application needs. Many of these packages have the ability to communicate with several different types of external hardware at the same time, using specific drivers designed for each device. Once chosen, the package is installed and configured with application specific details such as: I/O Plexer addresses and parameters associated with each module. Once these packages are set up and activated, little effort is needed to operate the system. Technical support is usually available directly from the manufacturer. For a list of software that has been tested with our product please refer to appendix F. Please note: This list is always changing. Please call if the third party software the user wants to use is not listed.
(1-800-248-1632)
User written software is the most versatile of application specific Host programs. Generally developed by in-house programmers, user programs may be written in any language which supports serial communication. Typically these programs are written in BASIC, PASCAL, C or assembly language. In the case of user developed programs, support and documentation is the sole responsibility of the user. Appendix G is a simple BASIC program that demonstrates Host-I/O Plexer communications.

Local control functions (LCF) allow the I/O Plexer to control its process without Host intervention. This is an exception to the normal operation which is only under host control.

Local Control Functions (LCF)

Occasionally it is convenient to have an I/O Plexer make control decisions based on its I/O without Host intervention. This control is useful for a variety of purposes, such as; Host backup, communication load reduction, and Input/ Output reaction time. LCF's provide a means to implement these capabilities.

Local control functions allow the I/O Plexer to make decisions based upon its own inputs. These decisions can be implemented by changing outputs without action by the Host. LCF's provide several building blocks for describing the decision making. The use of this feature enhances the power of the I/O Plexer.

Having an I/O Plexer with the /L option installed (See unit part number) is a prerequisite for using local control functions. If the I/O Plexer is to remember these functions from power cycle to power cycle without being reconfigured each time, the / M option (battery backed-up memory) is also required.

INTRODUCTION

Hosts can transmit four types of instructions:
SETUP- Initialization used only once following a power recycle.
INPUT- Process input module data from sensors to provide the Host with information for control decisions. These can be analog or digital.

OUTPUT- Provide output module actuating information for carrying out control decisions. These can be analog or digital.

SERIAL I/O- Provides the use of an additional RS-232 port for the exchange of messages or data between the Host computer and an external RS-232 device.

As instructions are introduced in this manual, the function names, which are "setup", "analog input", "Digital input", "Analog output", Digital output", or "serial I/O" appear before the instruction.

I/O Plexer NUMBER SYSTEM:

I/O Plexer uses hexadecimal (Abbr. HEX) numbering subscript H , for example 8H, is used to designate a hexadecimal number and subscript D is used to designate a decimal number, for example 3D. Assume it is a decimal if not specified. For more details refer to appendices E and I.

As part of its power -up tests, the I/O Plexer determines which modules are analog and which are digital (empty positions are declared digital). All modules are initially set up as inputs. Outputs must be configured before sending any other instructions to the output modules. It is suggested that input modules be configured before using them to avoid errors.

INSTRUCTIONS:

Host initiated instructions have up to six elements. Five of which are always included. the format of all instructions is shown below.
$>$

Start of
Instruction

Carriage
Instruction
Character

Return
Checksum

Start of Instruction: A greater than sign ($>$) is always required to start an instruction.
Address: Each I/O Plexer contains 5 units, each with its own address. A two letter code is shown for each address. The addresses are always accessible by looking at the tow characters on the red flashing sequential display. Addresses can range from 00H to FFh.

ADDRESS TABLE

Address		IOP Display
2 Letter abbreviation in documentation		
Master Control	$\mathrm{U} 0=? ?$	$M C$
Master Digital	$\mathrm{U} 1=? ?$	$M D$
Master Analog	$\mathrm{U} 2=? ?$	$M A$
Digital Expander 1	$\mathrm{U} 3=? ?$	$E 1$
Master Future	$\mathrm{U} 4=? ?$	$M F$

Some Addresses have counterparts in more than one unit.

Digital	U 1 or U3	$D D$
Actual I/O address	$\mathrm{U} 1, \mathrm{U} 2$, or U3	$I O$
Any Address	$\mathrm{U} 0, \mathrm{U} 1, \mathrm{U} 2, \mathrm{U} 3$	$A U$

(Effects only the address it is sent to)
Applies to all addresses
Attached to IOP
simultaneously U0, U1, U2, U3 $L U$

* Master Future is reserved for future use. It defaults to the master Control address. All address features not present in a given I/O Plexer such as Master Analog or Digital expander 1 default to the Master control address.

Function Code(s): Function codes are unique to each instruction. Instructions are explained in detail later in this section and are summarized on the Quick Reference Guide.

Instruction Content: Instruction contents follow the function code. They usually contain a position field that specifies which module is to be acted upon. They may also contain additional modifiers and data that tells the module what specifically should take place.

POSITION FIELD

Most I/O Plexer instructions have a position field following the function code. The contents of this field determine which modules are affected by the instruction. Some instructions affect all modules. In these, the position field determines what the effect is for each module. In either case, the construction of the position field follows the same rules.

The position field is a 4 digit hex representation of a 16 digit number. Written this way, each digit of the 16 digit number (one digit for each possible module) can only be a 1 or a 0 . (These 1 or 0 are called bits)

To fill the position field, perform the following steps:

1. Make a list of the modules that the instruction is to affect, for example: $0,3,8,12,14$, and 15 .
2. Make a 16 digit number with a 1 in each position listed in step 1 and a 0 in all the other positions. The left most digit of the number is module 15 , the right most is module 0 . The number for our example is:

3. Divide the number built in step 2 into 4 digit numbers. Our example appears as: 1101000100001001.
4. Using the table below, look up each of the 4 digit numbers in step 3 and replace it with the corresponding hex number or letter. Our example becomes D109H. This is the value that should be put in the position field of the instruction. This table is on the Quick Reference Guide for easy access.

Module\#:	15141312	111098	6	3210
	-1 ${ }^{\text {st }}$ Char-	$-2^{\text {nd }}$ Char-	$-3^{\text {rd }}$ Char-	$-4^{\text {th }} \mathrm{C}$

Bit pattern	0000	0001	0010	0011	0100	0101	0110	0111
Hex Digit:	0	1	2	3	4	5	6	7
Bit Pattern:	1000	1001	1010	1011	1100	1101	1110	1111
Hex Digit:	8	9	10	11	12	13	14	15

5. It is always acceptable to use a 4-digit value in an instruction which requires a position field. Some instructions also accept an abbreviated version which has had the leading hex zeroes omitted. Some instructions consider the position field to be optional and assume a position field of FFFFH (All modules affected) if it is omitted.

Modifier/ Data Field

The Modifier/ Data field contains any additional information for the instruction. The size of this field is dependent on the instruction. The information in this field may be a letter corresponding to information presented in a table such as the h to select 1200 buad rate in the Serial N instruction or it may be actual variable data such as OFE for k in many of the analog instructions. These fields are explained in detail on each individual instruction page.

Checksum:	All I/O Plexer instructions, and responses with data, require a checksum. The checksum provides a means of confirming that the communications link has not distorted or garbled the instruction message. The checksum is computed by adding the decimal values (Appendix H) of all the ASCII characters in the message excluding the
start instruction character, ">" for instructions, and the "A" for	
responses. Subtract 256 until the number is less than 256 . Convert this	
remaining number to two hex digits. This is the checksum. For	
debugging purposes a wildcard checksum can be used. "??" acts as	
any correct checksum. For more information, refer to appendix B.	

Responses: The response depends on the instruction purpose, the communications protocol, and the correctness of their assembly. The general form of a response is listed below. For a detailed form, refer to each individual instruction. For 4 pass information, refer to section 2 of this manual.
$\left.\begin{array}{cc}\text { Acknowledgment } & \text { Response Content (if needed) () CR } \\ \text { Checksum if } \\ \text { Response Content }\end{array} \right\rvert\,$
Carriage Return
Acknowledgment : A response that is an "A" or that starts with an "A" with data appended to it means the I/O Plexer received the instruction and executed it.

Response Content: These fields are similar to the ones described earlier in the instruction section. It can consist of a position field, data, modifier field, or other information.

Checksum: Checksums appear only with responses that contain data. For more information on checksums, refer to appendix B.

Carriage Return: This is the end of response character, CR, and is always present.

Special Response Messages:
Special response messages are returned if unusual conditions are present. The condition can be the result of improper instruction assembly or noise in the communication link.

Message \quad Meaning

N00	Power has been off. An instruction other than the setup A instruction was attempted after a power cycle. This is a warning that the system needs to be reconfigured. The only exception occurs if the I/O Plexer has the /M option and setup eF is used. See N09for more information.
N01	Invalid instruction. This is returned if an invalid function code is used such as v for V
N02	Checksum error. Checksum received is not equal to the calculated checksum.
N02 *()*	Checksum error after Setup eC instruction was sent. The correct checksum for the message received is between the asterisks.
N03	The received checksum exceeded 80 characters.
N04	Non-Printable character. Only ASCII Characters from 21H to 7FH are permitted within instructions. For an ASCII conversion table see appendix H.

N05	Invalid instruction length. Too many or too few characters were received. For example, this response is returned if a position field requires 6 data fields and only 5 are included.
N06	Communication watchdog timed out. This only occurs if Setup D and or setup M instructions are used and a watchdog failure occurs. The next instruction sent after the timeout occurs , responds with N06 and is not executed.
N07	Invalid Data. This is returned when the I/O Plexer receives data not allowed in that field.
N08	Invalid Module
N09	Battery backed restart OK. This is similar to N00 message except this unit has a battery backed memory and came up running with the configuration saved using setup eF.
N10 \&N11	Reserved for local control function errors.
N12	Local RS-232 Buffer full. This occurs when the length of the serial O message would overflow the local port character buffer. The complete message is rejected.
N13 - N18	Reserved for local control function errors.

Setup 3-15
A power up Clear
B Reset
$\begin{array}{lc}\text { Delay } & 3-20 \\ \text { C turn around delay } & \end{array}$

Station Type 3-22
F identity station type

Module position Configuration 3-24
G configure all modules
H Configure Inputs
I Configure Outputs
$\begin{array}{ll}\mathrm{J} \text { Read Module Configuration } & \text { 3-26 }\end{array}$

Communication Protocol 3-28
E Protocol

Watchdog	$3-32$
D watchdog delay- Digital	
m Watchdog Delay-Digital	
D watchdog Delay- Analog	$3-42$
m Watchdog Delay- Analog	
eD Delay multiplier, WDM- enable	

Timer Resolution
n Timer Resolution Multiplier, TRM 3-44
Response Tags 3-46
eA Enable Address TagdA Disable Address Tag
eC Enable Checksum Tag
dC Disable Checksum Tag
Error Message Control 3-50
eE enable Error Messages
dE Disable Error Messages
Battery Backed 3-52
eF Save SetupdF Disable Setup
Variable Addressing 3-54
a Set Variable Addressb Read Variable Address

Setup A

	Instruction
A Power-Up Clear	$>A U A()$ CR
Purpose:	Prevents the N00 or N09 Response message for the first instruction received after power-up. This instruction does not affect operation or setup.
Prerequisite:	None
Default:	None
Battery Backed:	If the Unit has the /M option installed, this instruction cancels the N09 response.
Address:	Any master control, Master analog, Master Digital, or Digital expander 1 address.
Caution:	This instruction only prevents the N00 or N09 response message. It has no effect on operation or setup or any other function of this I/O Plexer.
Remarks	Any other instruction returns an N00 or N09 response message. The
N00 Response tells the host that the power has been off and the I/O	

Example: This instruction prevents the N00or N09 response message from appearing after power is off when a message is sent to address 40 .

Instruction	Response
$>40 \mathrm{AA} 5 \mathrm{CR}$	ACR

Instruction Content:

$>$	$=$ Start of Instruction
$\mathrm{AU}=40$	$=$ Address
A	$=$ Function Code
$(\mathrm{O}=\mathrm{A} 5$	$=$ Checksum

Response Content:
$\mathrm{A}=$ Acknowledgment

Setup B

	Instruction Response
B Reset	$>A U B() \mathrm{CR} \quad \mathrm{AcR}$
Purpose:	Initializes analog or digital I/O configuration parameters for that I/O Plexer address to power up defaults.
Prerequisites:	None
Default:	None
Battery Backed	This instruction DESTROYS information saved by battery backed instruction Setup eF.
Address:	Any Master control, master digital, master analog, or digital expander 1 address.
Caution:	The I/O Plexer only resets the address it is sent to. For example, if it is sent to the digital expander 1 address, it does not reset the master digital address This instruction has no effect on turn around delays configured by setup C
Remarks:	It affects various things depending on the address it is sent to.
	Master Control Address: - It does nothing except return an A

Master Digital or Digital expander 1 address:

- Clears Latches, pulse counters, pulse duration, and pulse complete bits.
- Stops Squarewaves
- Clears output types
- Deactivates digital watchdogs
- Resets timer resolution multiplier (TRM) to 1
- All digital modules are seen as inputs
- Turns all outputs to Off

Master Analog Address:

- Stops all analog activity (waves etc...)
- Sets all analog outputs to zero scale
- Deactivates analog Watchdogs
- Stops averaging
- Clears averaging complete bit
- Clears temperature sensor types
- Offset set to zero and Gains set to 1
- All analog modules are seen as inputs

Example: \quad Performs the reset instruction to the I/O Plexer address 40

Instruction	Response
$>40 \mathrm{BA} 6 \mathrm{CR}$	ACR

Instruction Content:

$>$	$=$ Start of instruction character
$A U=40$	$=$ Address
B	$=$ Function code
()$=\mathrm{A} 6$	$=$ Checksum

Response Content:
A = Acknowledgment

Setup C

	Instruction	Response
C Turn around Delay $>L U \underline{\mathrm{C}} f() \mathrm{CR}$		Acr
Purpose:	Provides the means fo response to an instruc	transmission of an I/O Plexer
Prerequisite:	None	
Default:	No Delay ($\mathrm{f}=0$)	
Battery backed:	The underlined instru	ved in memory if:
	1) The I/O Plexer has AND	y Option
	2) Setup eF instruction desired.	the system is configured as
Address:	This can be sent to any affects all addresses a the master digital, ma	but it is a global instruction. It the master control address such as d the digital expander 1.
Remarks:	The turn-around delay	modem applications.

Example:
This instruction sets up a 100 mSec turn around delay for all addresses associated with this chassis, including digital expander1.

Instruction	Response
$>00 \mathrm{C} 2 \mathrm{D} 5 \mathrm{CR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
$L U=00$	$=$ Address
C	$=$ Function code
$\mathrm{f}=2$	$=$ Turn around delay time selected from the f table below

f Table

Turn Around Delay	$=$ No Delay	10 mSec	100 mSec	500 mSec
Set f	$=0$	1	2	

() = D5 =Checksum
Response Content:
A= Acknowledgment

Setup F

	Instruction	Response
F Identify station type $>A U F($)CR	A0z ()CR	
Purpose:	Identifies the function of the given address	
Prerequisite:	None	
Default:	None	
Battery Backed:	Not applicable	
Address:	Any Address	

Instruction	Response
$>00 \mathrm{FA} 6 \mathrm{CR}$	A 0262 CR

Instruction content:

$>$	$=$ Start of instruction character
$A U=00$	$=$ Address
F	$=$ Function code
()$=$ A6	$=$ Checksum

Response: All possible responses are shown below:
A0060CR $=$ Digital Address
A0161CR $=$ Master Analog Address
A0262CR $=$ Master Control Address
The digital response means it is either a master digital address or a digital expander 1 address.

Setup G,H, I

Instruction		Response
G Configure All modules	$>10 \underline{\mathrm{Ge}}$ () CR	Acr
H Configure Inputs	$>\mathrm{IOHe}(\mathrm{CR}$	Acr
I Configure outputs	$>\mathrm{IOI} \underline{\mathrm{I}}$ () CR	AcR

Purpose: Designate which module positions are to be inputs or outputs.
Prerequisite: None
Defaults: All module positions are designated as inputs
Battery Backed: The underlined instruction data is saved in memory if:

1) The I/O Plexer has the /M memory option

AND
2) Setup eF instruction is issued after the system is configured as
desired
Address: Any Master analog, master digital, or digital expander 1 address. It only configures one address at a time.

Caution: These instructions should always be issued first. If they are issued after other instructions have been sent everything in progress is stopped (Pulses, waveforms. delays etc...). It even clears all digital Z instructions from every module. We recommend the use of setup B and then reconfiguring if changes are needed.

This instruction configures modules 15 and 7 as outputs. All other positions are inputs.

Instruction Response
$>40 \mathrm{G} 80807 \mathrm{BCR} \quad$ AcR
Instruction content:

$>$	$=$ Start of instruction character
$I 0=40$	$=$ Address
G	$=$ Function code
$e=8080$	$=$ Position field

For setup G: 1's specify output modules 0 's specify input modules
For setup H: 1's specify input modules 0 's are disregarded
For setup I: 1's specify input modules 0 's are disregarded

If this field is omitted, FFFFH is assumed by the I/O Plexer.
Leading hex zeroes may be dropped, for more information refer to appendix A
() = 7B = Checksum
Response Content:
A = Acknowledgment

Setup j

Instruction			
j read module configuration	$>I 0 \mathrm{j}(\mathrm{OCR}$	\quad	Response
:---			
$\operatorname{Ac}()_{\mathrm{CR}}$			

Purpose: \quad| Returns current input/ output configuration. This is a good way to |
| :--- |
| verify your configuration done with setup G, H, and I |

Prerequisite: None

Default: None
Battery Backed: Not applicable
Address: Any Master digital, master analog. or digital expander 1 address. located at the I/O Plexer analog address 80 . The response from I/O Plexer indicates that modules in positions 3,4 , and 5 are analog outputs.

Instruction
$>80 \mathrm{jD} 2 \mathrm{CR}$
Instruction content:

$>$	$=$ Start of instruction character
$I 0=80$	$=$ Address
j	$=$ Function code
$(\quad)=$ D2	$=$ checksum

Response
A0038CBCR

Instuction content.

Response Content:
A = Acknowledgment
$\mathrm{c}=0038=$ Position field. 4 hex digits are returned for each module specified in the instruction's position field. 1's indicate output modules, and 0's indicate analog input modules or digital modules. Values are returned from highest module (15) to lowest module (0).
()$=\mathrm{CB}=$ Checksum

Setup E

Instruction
E Protocol -2 Pass >LUE0()CR
E Protocol -4 Pass >LUE1()CR

Response
Acr
ACR

Purpose: \quad Selects communication protocol to be followed. 4 pass is intended for noisy communication environments and system debugging where accidental output changes could be dangerous.

Prerequisite: None
Default: Protocol type is permanently saved in the I/O Plexer. On power up the protocol is shown on the display. It is shipped in 2 pass.

Battery Backed: No affect, always saved
Address: Any address. This is a global instruction which affects all addresses associated with the master control address including the master digital, master analog, and the digital expander 1 address.

2 Pass:
Instruction is acknowledged and executed; response message is returned if incorrect. The possible responses are shown below.

Host	I/O Plexer
Valid non-data instruction	ACR
Valid data instruction	A (DATA) ()CR
Faulty instruction	N (Response Code)CR

4 Pass:

Host transmits the instruction; I/O Plexer echoes it but does not execute it; host returns ECR if the echo is correct.; the I/O Plexer then performs the instruction. If any character other than an E is returned to the I/O Plexer the instruction is cancelled.

Host:	I/O Plexer:
Instruction	A (Echo instruction)CR
ECR	ACR
	OR
	A(data)()CR
	OR
	A(Response Code $) \mathrm{CR}$

A list of response codes can be found on page 3-12

Instruction	Response
$>00 \mathrm{E} 1 \mathrm{D} 6 \mathrm{CR}$	ACR

Instruction content:

$$
\begin{array}{ll}
> & =\text { Start of instruction character } \\
00 & =\text { Address } \\
\text { E1 } & =\text { Function code for } 4 \text { pass } \\
()=\text { D6 } & =\text { checksum }
\end{array}
$$

Response content:
A $=$ Acknowledgment

Example2: Instructs the I/O Plexer at address 00 and all associated addresses to use 2 pass. This instruction is executed in 4 pass.

Instruction	Response
$>00 \mathrm{E} 0 \mathrm{D} 5 \mathrm{CR}$	A00E0D5CR

Instruction content:

$>$	$=$ Start of instruction character
$L U=00$	$=$ Address
E0	$=$ Function code for 4 pass
()$=$ D5	$=$ checksum

Response content:

A	$=$ Acknowledgment
$L U=00$	$=$ Address
E0	$=$ Function code for 4 pass
()$=$ D5	$=$ checksum

Instruction Content:
$\begin{array}{ll} & \mathrm{E}=\text { Echo OK character } \\ \text { Response Content: } \quad \mathrm{A}=\text { Acknowledgment }\end{array}$

Communication Watchdog

Instruction Response

D Watchdog Position delay - Digital	$>D D \underline{\mathrm{D} c g(}) \mathrm{CR}$	ACR
m Watchdog Position/ delay-Digital	$>D D \underline{\mathrm{~m} c n}() \mathrm{CR}$	ACR
D Watchdog Position/ delay -Analog	$>M A \underline{\mathrm{D} c g}() \mathrm{CR}$	ACR
m Watchdog Position/ delay -Analog	$>M A \underline{\mathrm{~m} c \ldots l() \mathrm{CR}}$	ACR
eD Watchdog multiplier - Enable	$>M C \underline{\mathrm{eD}() C R}$	ACR
dD Watchdog multiplier -Disable	$>M C \underline{\mathrm{dD}}() \mathrm{CR}$	ACR

Purpose: The watchdog delay instructions cause the I/O Plexer to go to a specified state if no instructions are received from the host for a specified period of time. This instruction is good for switching to emergency or standby status at the I/O Plexer in the event that the host can no longer control it.

Prerequisite: For any watchdog instruction to affect an output, it must be configured as an output using setup G or I.

Defaults: Watchdog is inactive
Battery backed: The underline instruction data is saved in memory if:

1) The I/O Plexer has the /M memory option

OR
2) Setup eF instruction is issued afer the system is configured as desired. time out with a N06 response message and the instruction not executed.

There is a separate watchdog for each digital and analog address. Digital expander 1 is separate from the master digital address. When a failure occurs, all modules at that address are set. Module positions not explicitly given other values are set to zero.

Setup eD allows the delay to be multiplied by 256 to provide longer delays

The programmable communication watchdog delay instructions should not be confused with I/P Plexer's hardware watchdog. The hardware watchdog acts automatically in the event of a hardware or firmware failure and responds within 1 second. The hardware watchdog turns all outputs off, and locks the I/O Plexer. The hardware can only be reset by recycling power. The middle horizontal bar of the display is on continuously when a hardware watchdog time out occurs.

Setup D (Digital Watchdog)

Example: If ther is no serial communication for 1minute, this instruction activates output module 0 and deactivates all other digital outputs at address 43 .

Instruction Response
$>43 \mathrm{D} 6 \mathrm{E} 1$
ACR
Instruction content:

$>$	$=$ Start of instruction character
$D D=43$	$=$ Address
D	$=$ Function code
$\mathrm{g}=6$	$=$ Time/ Action field from table below

Values for g can range from 0-7, all others return N08 response.

g	Time	$\underline{\text { Action }}$
0		Watchdog Disable
1	10 Seconds	Turn all digital output modules off
2	1 Minute	Turn all digital output modules off
3	10 Minutes	Turn all digital output modules off
4		Watchdog Disable
5	10 Seconds	Turn module 0 on, all others off
6	1 Minute	Turn module 0 on, all others off
7	10 Minutes	Turn module 0 on, all others off

If this field is omitted, $\mathrm{g}=0$ is assumed and the watchdog is disabled.
() = E1 = Checksum
Response Content:
A = Acknowledgment

Setup m (Digital Watchdog)

m Watchdog Position/ Delay -Digital $>D D \operatorname{mcn}(\mathrm{OR}$ | Instruction ACR |
| :--- |
| Purpose: |
| Addressing: |
| Remarks: |
| Allows the user to specify individual states for the digital modules |
| when the serial communication watchdog times out. |

Example: Instructs the I/O Plexer at address 41 to turn modules 15 and 0 on and disable others if there is no communication with the digital address for 2 seconds (WDM 1)

Instruction	Response
$>41 \mathrm{~m} 8001 \mathrm{C} 816 \mathrm{CR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
$D D=41$	$=$ Address
m	$=$ Function code for 4 pass
$\mathrm{C}=8001$	=position field. 1's correspond to outputs on. 0 's correspond to outputs off. For more information refer to Appendix A.
$\mathrm{n}=\mathrm{C} 8$	$=$ Time delay. Delay $\mathrm{H}=($ desired delay seconds $/(.01$
	*WDM $) \mathrm{H}$ convert 1 to 4 hex digits.

Response Content:
$\mathrm{A}=$ Acknowledgment

Setup D (Analog Watchdog)

	Instruction	Response
D watchdog position/ Delay -Analog	$>M A \operatorname{Dcg}() \mathrm{CR}$	ACR

Purpose: \quad Setup D (Analog) sets up the time delay and can set modules to zero or full scale when a serial watchdog failure occurs. If used in conjunction with Setup m (analog), it can set up levels other than zero and full scale when a serial watchdog occurs.

Address: Any master analog address
Caution: \quad For $g=0-7$ the table presented overrides any values previously set by setup m (analog).

Reference: For general information on communication watchdogs, refer to the watchdog introduction section.

Example: \quad Instructs the analog address 83 to output full scale to module 0 and 7 if there is no activity on the analog address line for 10 seconds.

Instruction	Response
$>83 \mathrm{D} 00815 \mathrm{ADCR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
83	$=$ Master Analog Address
D $=0081$	$=$ Function Code
$\mathrm{c}=$	= Position field. 1's specify which modules are to be affected. 0's are disregarded. For more information refer to appendix A

Values for g can range from $0-7$ or $14 \mathrm{H}-\mathrm{FFFFH}$

g	Time	Action
0	Disable	
1	10 Seconds	Write Zero scale
2	1 Minute	Write Zero scale
3	10 Minutes	Write Zero scale
4	Disable	
5	10 Seconds	Write full scale
6	1 Minute	Write full scale
7	10 Minutes	Write full scale

If setup m is used, setup D configures the time delay and setup m specifies the output levels.
Delay $=(0.01$ seconds $* W D M)$ H Convert 1 to 4 hex digits.
Delays of less than 200 mSec 14 H are not accepted and return a N07 response message.

If no delay is given, the watchdog is disabled
If WDM is in effect, all of the above times are multiplied by 256.
() = AD = Checksum
Response Content:

$$
\mathrm{A}=\text { Acknowledgment }
$$

Setup m (Analog Watchdog)

Instruction	Response
m Watchdog Position/ levels $>$ Analog) $_{\text {(Anc. . }}(\mathrm{l}) \mathrm{CR}$	ACR

Purpose: Setup m must be used in conjunction with setup D (Analog). Setup D determines the delay period and setup m determines the output levels the analog outputs go to when a serial communication watchdog failure occurs.

Address: Any master analog address.
Caution: All analog modules that are not given a specific level are set to zero scale.
If in setup D (analog) $\mathrm{g}=0-7$, then any previous levels set by setup m are ignored.

Reference: For general information on communication watchdogs, refer to the watchdog introduction section.

Example: \quad Instructs the I/O Plexer at address 81 to output the value $800 \mathrm{H}(1 / 2$ scale) to analog output module 12 and the value FFFH (Full scale) to module 7 , if a serial watchdog timeout occurs.

Instruction	Response
$>81 \mathrm{~m} 1080800 \mathrm{FFF} 09 \mathrm{CR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character			
$M A=81$	$=$ Address			
m	$=$ Function code			
$\mathrm{c}=1080$	$=$ Position field. 1's specify which modules are to be			
affected. 0's are disregarded. For more information refer				
to appendix A.		\quad	$1=800 \mathrm{FFF}$	= Output value. 3 hex digits represent the level sent to each module chosen in the position field. The values are sent out ordered from the highest (15) to lowest (0)
:---	:---			
()$=09$				
$=$ Checksum				

Response Content:
A $=$ Acknowledgment

Setup eD, dD (Watchdog)

	Instruction	Response
eD Watchdog multiplier - Enable	$>M C \underline{\mathrm{eD}() \mathrm{CR}}$	ACR
dD Watchdog multiplier - Disable	$>M C \underline{\mathrm{dD}}()_{\mathrm{CR}}$	ACR

Purpose: \quad This instruction allows the watchdog delay time to be multiplied by 256. This extends the maximum watchdog delay time from 10.9 minutes to 46.6 hours.

Prerequisite: None
Defaults: \quad Watchdog multiplier $=1$
Battery backed: The underlined instruction data is saved in memory if:

1) The I/O Plexer has the /M memory option

AND
2)Setup eF instruction is issued after the system is configured as
desired.
Address: Any master control address
Remarks: This affects all communication watchdogs both analog and digital.
When this instruction is enabled, WDM $=256$

Example: This instruction enables the watchdog multiplier at all addresses connected to this master control address. This means that any time a 1 second delay is sent using setup D or m it is multiplied by 256 for an actual delay of 256 seconds.

Instruction	Response
$>00 \mathrm{eD} 09 \mathrm{CR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
$M C=00$	$=$ Master Control Address
eD	$=$ Function code
()$=09$	
$=$ ehecksum	

Response Content:
A $=$ Acknowledgment

Setup n

Digital h Retrigger time delay

Digital K Start ON pulse
Digital $\ell \quad$ Start Off pulse
Digital d
Digital e
Digital f
Digital Z. . H
Read pulse complete bits

Digital Z. .J
Read duration counters
Read and clear Duration counters
One Shot on
Digital Z. . I
One shot off
Digital Z. . K
Delayed on
Digital Z . .L
Delayed off
Digital Z. .M
Square Wave
Fast square Wave
Example: This instruction sets the timer resolution to 150 mSec per count.
Instruction Response
$>40 \mathrm{n} 0 \mathrm{~F} 48$
Acr
Instruction content:

$>$	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
n	$=$ Function code
$\mathrm{y}=0 \mathrm{~F}$	$=$ Timer Resolution. Resolution $=$ Desired multiplier
	converted to 2 hex digits. It can range from 0 to $255(\mathrm{FFH})$
$(\mathrm{y}=48$	$=$ Checksum

Response Content:

$$
\mathrm{A}=\text { Acknowledgment }
$$

Setup eA, dA

	Instruction	Response
eA Enable Address Tag	($\quad>M C \underline{\text { eA }(~) ~} \mathrm{CR}$	Acr
dA Disable Address Tag	g ($>$ MCdA(CR	Acr
Purpose:	Provides the means for appending an address to the I/O Plexer responses.	
Prerequisite:	None	
Defaults:	Address tags disabled	
Battery backed:	The underlined instruction data is saved in memory if:	
1) The I/O Plexer has the /M memory option AND		
desired. 2) Setup eF instruction is issued after the system is configured as		
Address:	Master control address only, but this is a global instruction. It affects all addresses associated with this master control address such as the master digital, master analog, and digital expander 1.	

Example Enables the address tag.

Instruction	Response
$>00 \mathrm{eA} 06 \mathrm{CR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
$M C=00$	$=$ Master Control Address
eA	$=$ Function code
()$=06$	$=$ checksum

Response Content:
$\mathrm{A}=$ Acknowledgment
Example: Disables address tag

Instruction	Response
$>00 \mathrm{dA} 05 \mathrm{CR}$	$\mathrm{A} * 00^{*} \mathrm{CR}$

Setup eC, dC
Instruction

eC Enable Checksum tag
dC Disable Checksum tag

Purpose:	Provides the means for appending correct checksum to the I/O Plexer responses.
Prerequisite:	None
Defaults:	Checksum tag disabled

Battery Backed:
The underlined instruction data is saved in memory if:

Remarks:

Example: \quad Enables the checksum tag

Instruction	Response
$>00 \mathrm{eC} 08 \mathrm{CR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
$M C=00$	$=$ Master Control Address
eC	$=$ Function code
$(\mathrm{e}=08$	$=$ checksum

Response Content:
$\mathrm{A}=$ Acknowledgment
Example: Disables Checksum tag
Instruction
Response
$>00 \mathrm{dC} 07 \mathrm{CR}$
A * () * CR

Setup eE, dE
Instruction
$>M C$ eE ()CR
Acr
eE Enable Error messages
dE Disable Error messages
$>M C$ dE()CR

Purpose: Provide the means for disabling the return of error messages that the host software may not be able to handle.

Prerequisites: None
Default: Error message enabled
Battery Backed: The underlined instruction data is saved in memory if:

1) The I/O Plexer has the /M memory option

AND
2) Setup eF instruction is issued after the system is configured as desired.

Address: Master Control address only. but this is a global instruction. It affects all addresses associated with this master control address such as master digital, master analog, and the digital expander 1.

Caution:
There is NO response when an error occurs. This condition may cause the host to wait indefinitely for a response that will never be issued.

Example: Disables error messages

Instruction	Response
$>00 \mathrm{dE} 009 \mathrm{CR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
$M C=00$	$=$ Master Control Address
dE	$=$ Function code
$(\mathrm{O}=09$	$=$ checksum

Response Content:
A $=$ Acknowledgment

eF Save Setup	$>M C \underline{\mathrm{eF}}() \mathrm{CR}$	ACR
dF Disable Setup	$>M C \underline{\mathrm{dF}}() \mathrm{CR}$	ACR

Purpose: Allows the configuration information to be saved in battery backed RAM, while power is off. Must have /M option.

Prerequisite: None
Default: Disable
Battery Backed: The underlined instruction data is saved in memory if:

1) The I/O Plexer has the /M memory option AND
2) The eF instruction is issued after the system is configured as desired.

Address: Master Control address only, but this is a global instruction. It affects all addresses associated with this master control address such as the master digital, master analog, and the digital expander 1.

Remarks: When setup eF instruction is sent, the I/O Plexer calculates and stores a checksum of the configuration data. During power up a new checksum is computed. If it agrees with the stored one, the system is configured as it was before the power cycle. If they do not agree, the system is initialized to the default state as if there was no battery backup.

Changing the configuration after issuing setup eF changes the checksum. After all changes, setup eF must be re-issued to save the configuration.

Example This instruction saves the system configuration as it is at the time it was sent.

Instruction	Response
$>00 \mathrm{eF} 0 \mathrm{BCR}$	ACR

Instruction content:
$>\quad=$ Start of instruction character
$M C=00 \quad=$ Master Control Address
eF $\quad=$ Function code
() = 0B =checksum

Response Content:
$\mathrm{A}=$ Acknowledgment

Setup a, b

a set Variable Address

Default:	Offset addressing automatically sets the addresses based on the Master Control address. It is shown below.
Master digital address	$=40 \mathrm{H}+$ Master Control address

Offset addressing allows setting the master control address to any value from 00 H to 3 Fh . Using setup a allows any address to be set to any value from 00H to FFh.

Caution: This instruction can also reset the Master control address. Once changed, the new Master control address is required to change it back. Powering down will not bring it back in its previous state.

Battery Backed: No effect, always saved
Address: Any master control address
Example: \quad This requests the addresses associated with master control. 00 H

Instruction	Response
$>00 \mathrm{bC} 2 \mathrm{CR}$	A004080C000FFCR

Instruction content:

$>$	$=$ Start of instruction character
$M C=00$	$=$ Master Control Address
a	$=$ Function code
()$=\mathrm{Cl}$	$=$ checksum

Response Content:
$A=$ Acknowledgment
$M C=00$ New master control address
$M D=40$ New Master Digital address
$M A=80$ New master analog address
$E 1=C 0$ New digital expander 1 address
$M F=00$ Master Future address
()$=$ FF Checksum

Example 2: This instruction changes the addresses associated with master control address 00 H

Instruction	Response
$>00 \mathrm{a} 0506070805 \mathrm{C} 0 \mathrm{CR}$	A0506070805FFCR

Instruction Content:

$>$	- start of instruction character
$M C=00$	- Master control address
a	- function code
$M C=05$	- Master control address
$M D=06$	- Master digital address
$M A=07$	- Master analog address
$E 1=08$	- Digital expander 1 address
$M F=05$	- Master future address
$(~)=\mathrm{CO}$	- Checksum

Response Content:

A	- Acknowledgment
$M C=05$	- Master control address
$M D=06$	- Master digital address
$M A=07$	- Master analog address
$E 1=08$	- Digital expander 1 address
$M F=05$	- Master future address
$\left(\begin{array}{l}\text { (})=\text { FF }\end{array}\right.$	- Checksum

Status 3-62
M read all modules
Pulse Duration 3-64
a Set all trigger edges
b Set positive trigger edges
c Set negative trigger edges
d Measurements Complete
e Read duration complete
g Clear duration counters
f Read and Clear counters
y Pulse accumulator -enable
z Pulse accumulator -disable
Pulse Counting 3-72
W read Counters
X Read and Clear counters
Y Clear Counters
U Start Counters
V Stop Counters
T Start/ Stop Counters
Edge Detection 3-76
N set all latch edges
O Set latches Off to On
P Set latches On to Off
Q Read latches
S Clear Latches
R Read and Clear Latches

DIGITAL INPUT INTRODUCTION

PICTORIAL GLOSSARY
Digital a, b, c

Digital e,f

Time n is collected. Only the first pulse is measured. It must be reset to measure another pulse.

1

2

3
N

Pulse duration measurement with Accumulator option and positive edgetriggering produces the following results:
$n \mathrm{~T}=n 1+n 2+n 3$
$n \mathrm{~T}=$ Total On time accumulated over all pulses

Digital W, X, Y, U, V, T

Pulse counter counts the number of pulses

> Digital N, O, P, Q, R, S

Off to On

	Instruction	Response
M Read all modules	$>D D M() \mathrm{CR}$	AcCR

Purpose: Determines the on/ off state of all digital I/O positions, both input and output.

Prerequisite: \quad Configure as inputs using step G or H
Default: None
Battery Backed: Not applicable
Address: Any master digital or digital expander 1 address.
Caution: The instruction does NOT read the physical output at the terminal strip, but the actual value last sent by the I/O Plexer.

Example:
This instruction reads the status of all digital modules. The response indicates that the module 4 and 5 are on.

Instruction	Response
$>40 \mathrm{MB} 1 \mathrm{CR}$	A 0030 C 3 CR

Instruction Content:

$>$	- start of instruction character
$D D=40$	- Digital address
M	- function code
$(\mathrm{y}=\mathrm{B} 1$	- Checksum

Response Content:

A - Acknowledgment

$\mathrm{c}=0030 \quad$ - Position Field, 1's mean the module is on, 0 's mean they are off. The modules can be inputs or outputs. For more information refer to appendix A
$\left(\begin{array}{l}\text {) }=\text { C3 }\end{array} \quad\right.$ - Checksum

Digital a, b, c

	Instruction	Response
a Set All triggers edges	$>D D \underline{\mathrm{a} e}(\mathrm{OR}$	ACR
b Set Positive trigger edges	$>D D \underline{\mathrm{~b} e}($)CR	ACR
c Set Negative trigger edges	$>D D \underline{\mathrm{c} e}($)CR	ACR

Purpose:	Set triggers edges for pulse duration measurements. Digital a can be used if all inputs are to have a duration measurement, otherwise
Digital b and c should be used.	

Prerequisites: These instructions should be used before duration counter instructions, digital d, e, and f

Default: Negative trigger edges
Battery Backed: The underlined instruction data is saved in memory if:

1) The I/O Plexer has the / M memory option

AND
2) Setup eF instruction has been issued after the system is configured as desired.

Address: Any master digital or digital expander 1 address
Remarks: Positive trigger edge is for off on off pulse. Negative trigger edge is for on off on pulses.

Example:
Modules 4 and 5 are set to measure positive trigger edges.
Instruction
Response
$>40 \mathrm{~b} 003089 \mathrm{CR}$
Acr

Instruction content:

$>$	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
b	$=$ Function code
$\mathrm{e}=0030$	$=$ Position field

Digital a 1's set positive trigger edges
0's set negative trigger edges
Digital b 1's set positive trigger edges
0's are disregarded
Digital c 1's are negative trigger edges
0's are disregarded

If this field is omitted, FFFFH is assumed by the I/O Plexer. Leading hex zeroes may be omitted. For more information, refer to appendix A.
() = $89=$ Checksum
Response content:
$\mathrm{A}=$ Acknowledgment

Digital d

	Instruction	Response
d Measurement complete	$>D D \mathrm{~d}(\mathrm{)CR}$	$\mathrm{Ac}(\mathrm{)} \mathrm{CR}$

Purpose: Determines which positions have completed full pulse duration

Prerequisites: Set the duration trigger edges using the digital a, b, or c instruction. Initialize duration counters to zero with the digital f or g instruction.

Default: Configure as inputs using setup G or H
Battery backed: Not applicable
Address: \quad Any master digital or digital expander 1 address.

Remarks:	A measurement complete bit is set to indicate entire pulse has been gathered. The host can read this bit to see if measurements are complete and then read the duration counters. No other durations will be measured until complete bit is cleared.

If the pulse duration is read (Digital e and f) before the pulse had finished, the partial duration is returned.

The measurement complete bit is cleared whenever digital f or g is issued, to clear pulse duration.

Caution: These instructions are affected by the setup n instruction, which can adjust the timer resolution multiplier, TRM.

If pulse accumulator, digital y, is used the measurement complete set bit is never set.

Example: This instruction asks which modules have completed a pulse duration measurement. The response indicates that module 4 has completed it.

Instruction	Response
$>40 \mathrm{dC} 8 \mathrm{CR}$	A0010C1CR

Instruction content:

$$
\begin{array}{cl}
> & =\text { Start of instruction character } \\
D D=40 & =\text { Digital Address } \\
\mathrm{d} & =\text { Function code } \\
(\mathrm{e}=\mathrm{C} 8 & =\text { checksum }
\end{array}
$$

Response Content:

$$
\begin{array}{cl}
\text { A } & =\text { Acknowledgment } \\
\mathrm{C}=0010 & \begin{array}{l}
\text { = Position field. The 1's bits have completed their } \\
\text { specified off on off, or on off on sequence. 0's have not } \\
\text { completed transition or are not digital inputs }
\end{array} \\
(\mathrm{O}=\mathrm{C} 1 & =\text { checksum }
\end{array}
$$

Digital e, f, g

	Instruction	Response
e Read Duration Counters	$>$ DDee() CR	A. . . $n($) CR
f Read and Clear Counters	$>D D f e() \mathrm{CR}$	A. . . $n($) CR
g Clear Duration Counters	$>D D \mathrm{ge}(\mathrm{)CR}$	Acr

Purpose: \quad Reads and /or clears pulse duration counters. When a pulse duration measurement is complete, the value is stored for the host to read. Another pulse will not be measured until this measurement is cleared. Digital f is the equivalent of the combination of Digital e and g .

Prerequisites: Duration counters must be setup using a, b, or c . Then set counters to zero with a clear instruction, digital f or g

Default: Configure as inputs using setup G or H
Battery backed: Not applicable
Address: Any master digital or digital expander 1 address.
Remarks: If the pulse duration is read before the pulse has finished, the current partial duration is returned.

The clear instruction also clears the measurement complete bits that are set.

Maximum count is 65,535 or FFFFH. If this number is reached the counter rolls over and continues counting. This occurs at 10.9 minutes to 46.6 hours depending on the value of TRM.

Caution: If pulse accumulation is being used (digital y) accumulated durations are read. Otherwise only the first pulse is measured. These instructions are affected by the setup n instruction which can adjust the timer resolution multiplier (TRM)

Example: \quad This instruction requests the duration for modules 4 and 5. Module 5 has a duration of 3.23 seconds and module 4 has a duration of 2.4 seconds assuming TRM $=1$.

Instruction
$>40 \mathrm{f00308DCR}$

Response
A014300f09ECR

Instruction content:

$>$	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
f	$=$ Function code
$e=0030$	= Position field. 1's select which modules duration to read and/ or clear. 0's are disregarded. If this field is omitted, FFFFH is assumed by the I/O Plexer. Leading hex zeroes may be omitted. For more information refer to appendix
	A.
$\left(\begin{array}{ll}=8 \mathrm{D} & \end{array}\right.$	$=$ Checksum

Response Content:

$$
\begin{array}{cl}
\mathrm{A} & =\text { Acknowledgment } \\
\mathrm{n}=014300 \mathrm{~F} 0 & =\text { Pulse duration. } 4 \text { hex are returned for each module } \\
\text { selected in the instruction's position field. Values are } \\
\text { returned from the highest module (15) to lowest module } \\
\text { (0). ???? are returned if the module is not a digital input. }
\end{array}
$$

Duration Decimal value of n * TRM * 0.01 Seconds (Seconds)

Module $4 \quad 00 \mathrm{~F} 0 \mathrm{H}$ * TRM * $0.01 \mathrm{sec}=2.4 \mathrm{Sec}$ * TRM
Module 500143 H * TRM* $0.01 \mathrm{sec}=3.23$ * TRM
() = 9E Checksum

Digital y, z

Instruction
$\begin{array}{lll}\text { y Pulse Accumulator -enable } & >D D y e(\text {)CR } & \text { ACR } \\ \text { z Pulse Accumulator - Disable } & >D D z e(\text {)CR } & \text { ACR }\end{array}$

Purpose: \quad This instruction is related to the instruction set of Digital a through Digital g. It allows the duration counter to accumulate the total pulse width of a train of pulses rather than just one pulse.

Prerequisite: \quad Digital a, b, or c must be used to set up the trigger edges. Digital e, f, and/ or g may be used to read and or clear the duration.

Default: Disabled
Battery Backed: The underlined instruction data is saved in memory if:

1) The I/O Plexer has the /M memory option

AND
2) Setup eF instruction is issued after the system is configured as
desired.

Address: Any master digital or digital expander 1 address.
Caution: Pulse complete bits (Read with digital d) are never set for positions modified by Digital y.

Example: \quad This instruction enables pulse accumulation at module 8 and 5.

Instruction	Response
$>40 \mathrm{y} 0120 \mathrm{~A} 0 \mathrm{CR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
y	$=$ Function code
$e=0120$	= Position field. 1's select which modules are effected, 0's are disregarded. If this field is omitted FFFFH is assumed by the I/O Plexer. Leading hex zeroes may be omitted. For more information see appendix A
$(\mathrm{A}=\mathrm{A} 0$	$=$ Checksum

Response Content:
$\mathrm{A}=$ Acknowledgment

Digital U, V, T

Instruction Response

U Start Counters	$D D U e() \mathrm{CR}$	ACR
V Stop counters	$D D V e($)CR	ACR
T Start/ stop computers	$D D T e($)CR	ACR

Purpose:	To stop and or start digital counters
Prerequisites:	Digital Y or X should be used to clear the counters before using Digital U or T to start counting.
Default:	Active
Battery Backed:	Not applicable
Address:	Any master digital or digital expander 1 address
Remarks:	Pulse rates up to 400 counts / sec with minimum on and off pulse width of 1.0millisecond can be counted. Counts off to on transitions.
Caution:	Digital T instruction stops all counters that are specified as zeroes in the position field.

Installation Response
$>40 \mathrm{~T} 00307 \mathrm{BCR}$

Instruction content:

>	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
T	$=$ Function code
$e=0030$	$=$ Position field.
	Digital U: 1's start counters 0 's are disregarded Digital V : 1's stop the counters 0 's are disregarded Digital T: 1's start the counters 0 's stop the counters
()$=7 \mathrm{~B}$	= Checksum

Response Content:
A = Acknowledgment

Instruction Response

W Read Counters	$>D D \mathrm{We}$ () CR	A. . . $n()_{\text {CR }}$
Y Clear Counters	$>D D \mathrm{Ye}(\mathrm{)cR}$	Acr
X Read \& Clear Counters	$>D D \mathrm{Xe}(\mathrm{)cR}$	A. . . $n($) CR

Purpose:	Reads and/ or resets the counters to zero. Digital X is equivalent to sending the digital W followed by Digital Y.
Prerequisite:	Before the counters are read using digital W or X they should be started using Digital U or T and set to zero using digital Y and X.
Default:	Not applicable
Battery Backed:	Not applicable

Address: Any master digital or digital expander 1 address
Remarks: Only clear instructions, Digital Y and X, reset counters.
Pulse rates of up to 400 counts/ second with a minimum on and off pulse width of 1.0 millisecond can be counted.

If the count exceeds the maximum count of $65,535=$ FFFFH it rolls over to zero and continues counting.

Instruction	Response
$>40 \mathrm{X} 00307 \mathrm{FCR}$	A0004000A95CR

Instruction content:

$>$	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
X	$=$ Function code
$e=0030$	
	$=$ Position field. 1's select which modules are read, 0's are
	disregarded. If this field is omitted, FFFFH is assumed by the I/O Plexer. Leading Hex zeroes may be omitted. For more information see appendix A
()$=7 \mathrm{~F}$	
	$=$ Checksum

Response content:

$$
\begin{array}{cl}
\mathrm{A} & =\text { Acknowledgment } \\
\mathrm{n}=0004000 \mathrm{~A} & =\text { Pulse counts. Each module specified in the instruction } \\
\text { returns a 4 digit hex count. Convert this to decimal for } \\
\text { actual count. Counter values are returned in sequence } \\
\text { from highest to lowest }(15-0) \text { ???? is returned if the } \\
\text { selected module was not a digital input. } \\
& \begin{array}{l}
\text { Module } 4=004 \mathrm{H}=4 \text { counts } \\
\text { Module } 5=000 \mathrm{AH}=10 \text { counts }
\end{array} \\
()=95 & =\text { Checksum }
\end{array}
$$

Digital N, O, P
Instruction Response

N Set All Latch Edges	$>D D \underline{\mathrm{Ne} e}() \mathrm{CR}$	ACR
O Set Latches Off to On	$>D D \underline{\mathrm{Oe}(~) \mathrm{CR}}$	ACR
P Set Latches On to Off	$>D D \underline{\mathrm{Pe}(~) C R}$	ACR

Purpose:	Sets up latch edges for On to Off or Off to On transitions. The Digital
N instruction affects all input positions.	

Prerequisites: \quad Configure as inputs using Setup G or H.
Default: Latch Off to On transitions.
Battery Backed: The underlined instruction data is saved in memory if:

1) The I/O Plexer has the /M memory option

AND
2) Setup eF instruction is issued after the system is configured as
desired.

Address: Any master digital or digital expander 1 address.
Remarks: Latches are set only when the specified transition occurs. Once a latch is set it will not change until a clear instruction Digital S or R resets the transition detecting latch.

Example: This instruction sets modules 4 and 5 to latch On to Off. The rest of the modules latch Off to On.

Instruction	Response
$>40 \mathrm{~N} 003075 \mathrm{CR}$	ACR

Instruction content:

Response content:
A = Acknowledgment

Digital Q, R, S

	Instruction	Response
Q Read Latches	$>D D \mathrm{Q}()_{\mathrm{CR}}$	AccR
R Read and Clear Latches	$>D D \operatorname{Re}(\mathrm{CR}$	AcCR
S Clear Latches	$>D D \mathrm{Se}($) CR	ACR

Purpose:	Reads and / or Clears latches that have been set. Digital Q and R reads ALL latches, regardless of the position field. Only the latches in the specified positions are cleared.
Prerequisites:	Latch direction must be set using Digital N, O, P and cleared using Digital S or R, before they can be read.
Default:	Not applicable
Battery Backed:	Not applicable
Address:	Any master digital or digital expander 1 address
Remarks:	Latches are set only when the specified transition occurs. Only clear type instructions Digital R or S Reset transition detecting latches.

Latches can detect pulses that are 1 mSec (0.001 seconds) or longer.

Example:	Instruction reads all the latches on the I/O Plexer at clears latches if they are set for modules 4 and $5 . ~ T h$ indicates module 4 and 12 have latched and that mo cleared.
Instruction Response	
$>40 \mathrm{R} 003079 \mathrm{CR}$	A 1010 C 2 CR

Instruction content:

$>$	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
R	$=$ Function code
$c=0030$	= Position field. 1's select which modules latches clear, 0's are disregarded. If this field is omitted FFFFH is assumed by the I/O Plexer. Leading hex zeroes may be omitted. For more information see appendix A
()$=79$	$=$ Checksum

Response content:

A	$=$ Acknowledgment
$\mathrm{c}=1010$	= Position field. 1's mean the latch has been set. 0's mean the latch hasn't been set. For more information refer to appendix A
y	$=$ Function code
$(\mathrm{y}=\mathrm{C} 2$	$=$ Checksum

Introduction 3-82
Status 3-84

M Read all Modules
J Set all Modules Off 3-86
K Set On

L Set Off

Modifiers 3-88
Z..G Disable waveform
Z..H One Shot On
Z..J One Shot Off
Z..I Delay On
Z..K Delay Off
Z..L Squarewave
Z..M Fast Squarewave
h Retrigger time delay

Pulses
i Generate n pulses
k start On pulse
1 start Off pulse

DIGITAL OUTPUT INTRODUCTION

PICTORIAL GLOSSARY
Digital Z. . .H and Z. . .J
One Shot ON/ OFF instructions

Digital Z. . I and Z. . K
Delayed ON/ OFF instructions

Instruction J or L sent to turn output off here

Digital i

Generate n Pulses

	Instruction	Response
M Read all Modules	Reads the On/ Off state of all digital I/O positions, inputs and outputs.	
Purpose:	None	
Prerequisite:	None	
Default:	Not applicable	
Battery Backed:	Any master digital or digital expander 1 address	

Instruction	Response
$>40 \mathrm{MB} 1 \mathrm{CR}$	A 0030 C 3 CR

Instruction content:

$>$	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
M	$=$ Function code
()$=$ B1	$=$ Checksum

Response content:

A	$=$ Acknowledgment
$c=0030$	$=$Position Field. 1's mean the module is on, 0's mean the module is off. The module can be input or output. For more information refer to appendix A
$(\mathrm{O}=\mathrm{C} 3$	$=$ Checksum

Digital J, K, L

Instruction Response

J Outputs On/ Off	$>D D J e() \mathrm{CR}$	Acr
K Outputs On	$>D D \mathrm{Ke}()_{\mathrm{CR}}$	Acr
L Outputs Off	$>D D \mathrm{Le}$ () CR	Acr

Purpose: Turns specified outputs On or Off. Digital J should be used only if all digital modules at this address are to be set, otherwise use Digital K and L.

Prerequisite: \quad Configure module positions as either inputs or outputs using Setup G or I

Default: Output modules Off
Battery Backed: Not applicable
Address: Any master digital or digital expander 1 address
Caution: If modifiers (digital Z instructions) are set up, outputs are affected accordingly when Digital J, K or L is sent.

Instruction	Response
$>40 \mathrm{~J} 00 \mathrm{FF} 9 \mathrm{ACR}$	ACR

Instruction content:

>	= Start of instruction character
$D D=40$	$=$ Digital Address
J	$=$ Function code
$\mathrm{c}=00 \mathrm{FF}$	$=$ Position field. Digital J : 1's turn the module On 0's turn the module Off Digital K : 1's turn the module On 0's are disregarded Digital L: 1's turn the module Off 0 's are disregarded If this field is omitted FFFFH is assumed by the I/O Plexer. Leading hex zeroes may be omitted. For more information see appendix A
()$=9 \mathrm{~A}$	= Checksum

Response Content:
A $=$ Acknowledgment

Digital Z

	Instruction	Response
Digital Z Modifiers		
One Shot On $>D D \operatorname{ZeH} n(\quad) \mathrm{CR}$		ACR
One Shot Off	$>D D \operatorname{ZeJ} n(\mathrm{)CR}$	ACR
Terminate	$>D D \operatorname{ZeG}(\mathrm{OR}$	ACR

Purpose: Produces an output that when turned On/Off stays in that state for the specified time period and then returns to its initial state.
When the one shot is no longer wanted it can be terminated using digital Z. . G

Prerequisite: Configure module positions as output using Setup G or I instruction.
Defaults: Modifiers disabled

Battery Backed: The underlined instruction data is saved in memory if :

1) The I/O Plexer has the /M memory protect option

AND
2) Setup eF is issued after the system is configured as desired.

Address: Any master digital or digital expander 1 address.
Caution: These instructions are affected by setup n , which adjusts the timer resolution multiplier, TRM. If a module is set for a one shot on, it has no affect turning it off.

The time delay is restarted when Digital J, K, or L resend the data which started the delay. Digital h does the same thing. These instructions are ONLY modifiers and do not turn any modules On or Off. It performs its function only after Digital J, K, or L is sent. Terminating the instruction (Digital Z . .G) returns the output to normal behavior and turns the module Off.

Example: \quad This instruction directs the I/O Plexer at address 40 to set module 2 for one shot On (off ON off). transition. The period for the On time is 00 C 8 H or 2 seconds if TRM $=1$.

Instruction	Response
$>40 \mathrm{Z} 0004 \mathrm{H} 00 \mathrm{C} 8 \mathrm{~A} 5 \mathrm{CR}$	ACR

Instruction content:

>	= Start of instruction character
$D D=40$	$=$ Digital Address
Z	$=$ Function code
$e=0004$	$=$ Position field. 1's select which modules are effected, 0 's are disregarded. This field must consist of at least one digit . Leading hex zeroes may be omitted. For more information see appendix A
H	$=$ Function Code for specifying modifier type
$\mathrm{n}=00 \mathrm{C} 8$	Time the signal is On/ Off
Time H	(Desired time in seconds/ (.01 seconds *TRM)) Convert 1-4 Hex digits, Special Case: $\mathrm{n}=0 \mathrm{H}$ is equivalent to 65,536 (approximately 10.9 Minutes assuming TRM = 1)
()$=5$	$=$ Checksum

Response Content:
A = Acknowledgment
Instruction Response

Digital Z Modifiers
Delayed On
Delayed Off
Terminate

$>D D$ Zeln $($) CR	Acr
$>D D \underline{\mathrm{ZeK} n}(\mathrm{)cR}$	Acr
$>D D Z e \mathrm{G}() \mathrm{CR}$	AcR

Purpose: Puts in a time delay before the module is turned Off or On. If the delay is no longer desired it can be terminated by Digital Z. . . G

Prerequisite: \quad Configure as output using setup G or I instruction.
Defaults: Modifiers Disabled
Battery Backed: The underlined instruction data is saved in memory if :

1) The I/O Plexer has the /M memory protect option

AND
2) Setup eF is issued after the system is configured as desired.

Address: Any master digital or digital expander 1 address.
Caution: These instructions car affected by setup n, which adjusts the timer resolution multiplier, TRM. The time delay starts over whenever digital h is sent or Digital J, K, or L. If a module is setup for delay On, there is no delay in turning it Off.

These instructions are ONLY modifiers and do not turn any modules on/ off.
It performs its function only after digital J, K, or L is sent. Terminating the instruction (Digital Z. . .G) return the output to normal behavior and turns the module off.

```
Example This instruction sets up module 0 to have a delayed On of 2 seconds assuming TRM=1
```

Instruction	Response
$>40 \mathrm{Z} 0001 \mathrm{I} 00 \mathrm{C} 8 \mathrm{~A} 3 \mathrm{CR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
Z	$=$ Function code
$e=0001$	$=$ Position field. 1's select which modules are effected, 0 's are disregarded. This field must consist of at least one digit . Leading hex zeroes may be omitted. For more information see appendix A
I	=Function Code for specifying modifier type
$\mathrm{n}=00 \mathrm{C} 8$	Time the signal is On/ Off
Time H	(Desired time in seconds/ (. 01 seconds *TRM)) Convert To 4 Hex digits, Special Case: $\mathrm{n}=0 \mathrm{H}$ is equivalent to 65,536 (approximately 10.9 Minutes assuming TRM $=1$)
()$=5$	= Checksum

Response Content:
A = Acknowledgment

Digital Z (Continued)

Instruction Response

Digital Z Modifiers

Squarewave
Terminate

$>D D Z \operatorname{LLtu}($)cr	Acr
$>D D Z e \mathrm{G}(\mathrm{CR}$	AcR

Purpose:	Digital Z . .L generates waves with periods from 0.02 t 21.8 minutes. Digital Z. . M Generates waves with periods from 5.12 to 92.8 hours.
Prerequisite:	Configure module position as output using Setup G or I instruction.
Defaults:	Modifiers disabled
Battery Backed:	Not applicable
Address:	Any master digital or digital expander 1
Remarks:	Analog squarewave can be generated using analog R or V instruction.
Caution	When the squarewave is terminated it goes to the off state.
	Unlike other digital Z modifiers, squarewaves start immediately.

Instruction Response
$>40 Z 0004 \mathrm{LC} 064 \mathrm{ABCR}$ ACR

Instruction content:

$>$	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
Z	$=$ Function code
$e=0004$	$=$ Position field. 1 's select which modules are effected, 0 's are disregarded. This field must consist of at least one digit . Leading hex zeroes may be omitted. For more information see appendix A
L	=Function Code for specifying modifier type
$\mathrm{t}=\mathrm{C} 0$	$=$ Time the signal is On
$\mathrm{u}=64$	```\(=\) off time Time \(\mathrm{H}=\) (Desired time in seconds/ 2.56 Convert 2 Hex digits, Special Case: t or \(\mathrm{u}=0 \mathrm{H}\) is equivalent to 65,536 (approximately 10.9 Minutes assuming TRM = 1)```
()$=5$	$=$ Checksum

Response Content:
A = Acknowledgment
Instruction Response

Digital Z Modifiers
Fast Squarewave
Terminate

$>D D Z e \mathrm{Mtu}(\mathrm{)CR}$	Acr
$>D D Z e \mathrm{G}(\mathrm{CR}$	AcR

Purpose:	Digital Z. . L generates waves with periods from 0.02 seconds to 21.8 minutes. Digital Z. . M generates waves with periods from 5.12 seconds to 92.8 hours.
Prerequisite:	Configure module position as output using G or I instruction.
Defaults:	Modifiers disabled
Battery Backed:	Not applicable
Address:	Any master digital or digital expander 1 address
Remarks:	Analog squarewaves can be generated by using Analog R or V instructions.
Caution:	Unlike other digital Z modifiers, squarewaves start immediately.

Instruction Response
$>40 \mathrm{Z} 004 \mathrm{M} 6484 \mathrm{~A} 5 \mathrm{CR} \quad$ ACR

Instruction content:

>	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
Z	$=$ Function code
$e=0004$	$=$ Position field. 1 's select which modules are effected, 0 's are disregarded. This field must consist of at least one digit . Leading hex zeroes may be omitted. For more information see appendix A
M	$=$ Function Code for specifying modifier type
$\mathrm{t}=64$	$=$ Time the signal is On
$\mathrm{u}=84$	$=$ off time Time $\mathrm{H}=$ (Desired time in seconds/ 2.56 Convert 2 Hex digits, Special Case: t or $\mathrm{u}=0 \mathrm{H}$ is equivalent to 65,536 (approximately 10.9 Minutes assuming TRM = 1)
() = A3	= Checksum

Response Content:
A = Acknowledgment

Digital h

	Instruction	Response
h Re-trigger Time Delay	$>D D h e(~) \mathrm{CR}$	ACR

Purpose: \quad This instruction restarts the time delay On Digital Z instructions. This can also be accomplished by sending the module the same on/ off data as that which started the delay.

Prerequisite: Configure module positions as output using G or I instruction
Defaults: None

Battery Backed: Not applicable
Address: \quad Master digital or digital expander 1 address
Caution: This instruction affects delays set up by:
Z. . H One shot On Digital modifier instruction
Z. . J One shot Off Digital modifier instruction
Z. . I Delay On digital modifier instruction
Z. . K Delay off digital modifier instruction

Note: this instruction does not affect squarewave generation.

Instruction	Response
$>40 \mathrm{~h} 004898 \mathrm{CR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
H	$=$ Function code
$e=0048$	= Position field. 1's select which modules are effected, 0 's are disregarded .If this field is omitted the I/O Plexer assumes the value FFFFH . Leading hex zeroes may be omitted. For more information see appendix A
$(\mathrm{O}=98$	
	$=$ Checksum

Response Content:

A = Acknowledgment

Digital i

	Instruction
i Pulse 50% duty cycle Purpose:	Output a pulse train consisting of a specified number of pulses which are on and off for equal amounts of time.
Prerequisite:	Configure module position as digital outputs using the setup G or I instruction.
Default:	None
Battery Backed:	Not Applicable
Address:	Any master digital or digital expander 1 address
Caution:	These instructions are effected by the setup n instruction, which adjusts the timer resolution multiplier, TRM.

Example:
This instruction outputs a pulse train of 4 pulses whose On/ Off time is .5 seconds to module 13 and 0 assuming a TRM $=1$

Instruction Response
$>40 \mathrm{i} 2001320004 \mathrm{~B} 9 \mathrm{CR}$
ACR

Instruction content:

>	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
i	$=$ Function code
$c=2001$	$=$ Position field. 1's select which modules are effected, 0 's are disregarded. For more information see appendix A
$\mathrm{t}=32$	$=$ Half period, The time shown is 50% duty cycle time or the on time or the off time. On time $=$ off time $=$ half period. $\mathrm{tH}=(($ Period in seconds $) /(.01$ Seconds * TRM $))$ Convert to two hex digits
$\mathrm{n}=004$	$=$ Number of pulses to be sent, 0-65535 or FFFFH are legal values. Special cases: $\mathrm{n}=$ FFFFH is treated as infinite $\mathrm{n}=0 \mathrm{H}$ is treated as FFFFH
() = B9	= Checksum

Response Content:

$$
\mathrm{A}=\text { Acknowledgment }
$$

Digital k, I

Instruction Response

k Start pulse On	$>D D \mathrm{kcn}()_{\mathrm{CR}}$	ACR
ℓ Start pulse Off	$>D D \operatorname{lcn}()_{\mathrm{CR}}$	ACR

Purpose: Turns specified modules On or Off for a specified period of time.
Prerequisite: Configure as digital outputs using Setup G or I instruction.
Default: None
Battery Backed: Not applicable
Address: Any master digital or digital expander address
Caution These instructions are affected by the setup n, which adjusts the timer resolution TRM.

Remark: These instructions care similar to one shot waveforms Digital Z. . H and Z . . J, except this actually performs the instruction when it is sent. Furthermore, they do not modify the behavior of the normal digital J, K , and L. Digital Z is a modifier which performs its task only when the module is turned $\mathrm{On} / \mathrm{Off}$.

Once started, a pulse may be terminated early by issuing a digital output instruction (Digital J, K, L, i, k, l) Do not use retrigger time delay, Digital h with Digital k ir 1.

Example:
This instruction turns module 13 and 5 On a for period equivalent to 01 F 4 H or 5 seconds assuming $\mathrm{TRM}=\mathrm{M}$.

Instruction	Response
$>40 \mathrm{k} 202001 \mathrm{~F} 46 \mathrm{ECR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
$D D=40$	$=$ Digital Address
$c=2020$	$=$ Position field. 1's select which modules are effected, 0 's
	are disregarded. For more information see appendix A
$n=01 \mathrm{~F} 4$	
	$=$ Time module is on/ off.
	$\mathrm{nH}=(($ Time desired in seconds $) /(.01$ seconds * TRM $))$
	Convert to 1 to 4 hex digits. Special cases: $\mathrm{n}=0$ does nothing
()$=6 \mathrm{E}$	$=$ Checksum

Response Content:
A = Acknowledgment,Input Value3-108
L Read
Offsets 3-110
g Calculate offset
h Calculate \& Set offsets
W Set offsets
Gains (Slopes) 3-114
X calculate gains
Z calculate gains
Y calculate gains
Range Limits 3-118
N set ranges
O read range errors
Q Clear range errors
Pread and clear errors
Minimum/ Maximum Values 3-122
a read lowest value
b clear lowest value
c read and clear lowest value
d read highest value
e clear highest value
f read and clear highest
Averages 3-124M read and average
T start averaging
i averaging completeU read averaged inputs
Temperature 3-130
k Set temperature sensor
ℓ Read temperature inputs

ANALOG INPUT INTRODUCTION

Analog input modules range is divided into 4095 segments - 12 Bit resolution. The values are represented by 4 hex digits. The first hex digit is the "range" digit. If it is a 1 , the reading is in range. The I/O Plexer handles values from 0 F 00 H to 2 BFFh . The module its self may not be able to generate values to the high and low end of this scale. There is NO guarantee of accuracy for values outside of 1000 H to 1 FFFH range If the module reads a value that is outside of the range it will report 000 H or 3000 H depending if its over or under scale. If an analog output or a digital module is interrogated, ???? are returned.

0000 H 0 F 00 H	Low value default
1000 H	* repeatable
1 FFFH	valid in-range value
2 BFFH	* Repeatable
3000 H	High value default

[^0]Caution 1: If an analog output module is installed but not configured as an output by the use of Setup G or I, it indicates 3000 H not???

Caution 2:
If an analog input is mistakenly configured as an analog output, it returns whatever value was last sent to the output module.

PICTORIAL GLOSSARY

analog $\mathrm{g}, \mathrm{h}, \mathrm{W}$
Applying calculated offsets to analog inputs

Analog X, Y, and Z
Applying calculated gains to analog input

Applying both calculated gains and offsets to analog inputs simultaneously

Frequently, analog sensors and analog input modules do not exactly match where voltages and currents are concerned. The common correction for this phenomena is known as calibration. Since analog voltage and current can sometimes be difficult to adjust, the I/O Plexer contains the ability to "correct" the analog data using host defined mathematical gains and offsets. An alternate method to using host specified values is the practice of physically changing the desired sensor output to the real zero or full-scale value then issuing the calculate and set command for offset or gain respectively. Using this method, system calibration can be performed quickly and efficiently.

This instruction may be used for triggering alarms or capturing data where response needs to be faster than the host to I/O Plexer network serial link can react. Using this feature, very fast events can be recorded for the host to review after the event has occurred. The reaction speed of the I/O Plexer varies depending upon the number of analog input channels installed in the system.

Analog L

	Instruction	Response
L Read Input	$>M A L e(~) C R$	A. . .k()CR

Purpose:	Determines the magnitude of analog inputs
Prerequisite:	Configure as input using Setup G or H
Default:	None
Battery Backed:	Not Applicable
Address:	Any Master analog address
Remarks	Response values include the effects of offset and gain instructions Caution:
	Unconnected analog input modules may result in unpredictable readings.

Instruction Response
$>80 \mathrm{~L} 200177 \mathrm{CR}$

Response
A1A291089AFCR

Instruction content:

$>$	$=$ Start of instruction character
$D D=80$	$=$ Master Analog Address
$e=2001$	$=$ Position field. 1's select which modules are effected, 0 's
	are disregarded. If this value is left blank, the I/O Plexer assumes FFFFH. For more information see appendix A
()$=77$	$=$ Checksum

Response Content:

A	$=$ Acknowledgment
$\mathrm{k}=1 \mathrm{~A} 291089$	= Response Data. 4 hex digits are returned for each module specified in the position field. Values are returned ordered from highest to lowest (15-0). If ???? is returned, an analog output or a digital module was interrogated.
Module 13 response is 1 A 29 H Module 0 response is 1089 H	
$(\mathrm{AF}=\mathrm{AF}$	$=$ Checksum

Analog g, h

Instruction Response
g Calculate Offset $\quad>$ MAge () CR
h Calculate \& Set Offset $\quad>M A \underline{h e}() \mathrm{CR}$
A..$k()_{\mathrm{CR}}$
A..$k() \mathrm{CR}$

Purpose: Analog g and h calculate and/ or set a constant offset which is added to an input before sending a value to the host. This is generally used to compensate for sensor offsets - Zero adjustment.

Prerequisite: \quad Configure as input using setup G or H
Default: \quad Offset $=0000 \mathrm{H}$
Battery Backed: The underlined instruction data is saved in memory if:

1) the I/o Plexer has the / M memory protect option

AND
2) Setup eF is issued after the system is configured as desired.

Address: Any master analog address
Remarks: It is recommended that the user keep the offset in the range -100% to $+8 \%$ of the module range.

Use of large offsets may reduce the usable range of a nodule.
This instruction should be used wen the specified module is at the desired zero scale and the gain $=1$

Caution: Do not use this instruction with temperature inputs

Instruction content:

$>$	$=$ Start of instruction character
$M A=80$	$=$ Master analog Address
$e=2001$	= Position field. 1's select which modules have an offset calculated, 0's are disregarded. If this field is omitted, the
	I/O Plexer assumes a value of FFFFH. Leading hex zeroes can be omitted. For more information see appendix A
$\left(\begin{array}{ll}\text { A }\end{array}\right.$	
	$=$ Checksum

Response Content:

A	$=$ Acknowledgment
$\mathrm{k}=$ F5E70003	Response data, 4 hex digits are returned for each module
position specified in the instructions position field. Values	
are returned from highest (15) to lowest (0). If $? ? ? ?$ is	
returned, an analog output or digital module was	
interrogated. Negative offsets are represented as any	
number with a non-zero first hex digit of F	
F5E7H is module 13 negative offset	
0003H is Module 0 positive offset	
For more information on analog input conversions, refer	
to appendix C	

Instruction Response

W Set Offsets
$>M A \underline{W c . . k(~) C R}$
ACR
Purpose: Adds a specified constant offset to an input before transmission to host.

Prerequisite: \quad Configure as input using setup G or H
Default: \quad Offset $=0000 \mathrm{H}$
Battery Backed: The underlined instruction data is saved in memory if:
1)The I/O Plexer has the /M memory protection option AND
2)Setup eF is issued after the system is configured as desired

Address: Any master analog address
Remarks: We recommend the user keep the offset in a range of -100% to $+8 \%$ of the module range.

Use of large offsets may reduce the usable range of a module.
Caution: Do NOT use this instruction with temperature inputs an offset of FFAEH.
Instruction Response
>80W20010051FFAE5ACR ACR

Instruction content:
\(\left.\begin{array}{ll}> \& =Start of instruction character

M A=80 \& =Master Analog Address

c=2001 \& =Position field. 1's select which positions are to execute

instructions, 0's are disregarded. For more information see

appendix A\end{array}\right\}\)| = Offsets. 4 hex digits are sent for each specified module. |
| :--- |
| $k=0051$ FFAE |
| Values returned are ordered from highest (15) to lowest
 (0). If an offset is sent to a position that is not configured
 as an analog input, it will be ignored. |
| ()$=5 \mathrm{~A} \quad$ |

Response Content:
A = Acknowledgment

Analog X, Z

	Instruction	Response
X calculate Gain	$>M A X e)($)CR	$\mathrm{A} . k \mathrm{CR}$
Z Calculate and set gains	$>M A \underline{Z e}() \mathrm{CR}$	$\mathrm{A} . k \mathrm{cR}$

Purpose: \quad Multiplies an analog input's value by a constant before transmission to host. This is generally used for sensor range span adjustment.

Prerequisite: \quad Offsets, if desired must be applied before using these instructions.
Default: \quad Gain $($ slope $)=1(k=1000 \mathrm{H})$
Battery Backed: The underlined instruction data is saved in memory if:

1) The I/O Plexer has the /M memory protect option AND
2) Setup eF is issued after the system is configured as desired.

Address: Any master analog address
Remarks: Gains can range from $0.25(0400 \mathrm{H})$ to $4(4000 \mathrm{H})$
Gain (slope) instructions along with the offset instructions make it possible for an input to be adjusted to "Fill" the entire1000H to 1 FFFH range

Gains larger than 1 result in lowered resolution
Special response N07 is returned if a gain is out of range
Caution: Do not use this instruction with temperature inputs

Instruction	Response
$>80 \mathrm{Z} 200185 \mathrm{CR}$	A2500075093CR

Instruction content:

$M A=80$	$=$ Master Analog Address
Z	$=$ Function code
$\mathrm{e}=2001$	= Position field. 1's select which modules are effected, 0's are disregarded. IF this field is omitted, the I/O Plexer assumes a value of FFFFH. Leading hex zeroes may be omitted. For more information see appendix A
$(\mathrm{O}=85$	$=$ Checksum

Response Content:

A	$=$ Acknowledgment
$k=25000750$	Calculated Gain, 4 hex digits are returned for each module specified in the position field. Values are returned from highest module (15) to lowest (0). ???? is returned if the module was
2500H is the calculated gain for module 13 0750 H is the calculated gain for module 0	
$(\mathrm{O}=93$	$=$ Checksum

	Instruction	Response
Y Set Gain (slope)	$>M A \underline{Y C \ldots k(~) C R}$	ACR

Purpose: \quad Multiplies an analog input's value by a constant before transmission to host.

Prerequisite: \quad Offsets, if desired must be applied before using these instructions.
Default: \quad Gain $($ slope $)=1(k=1000 \mathrm{H})$
Battery Backed: The underlined instruction data is saved in memory if:

1) The I/O Plexer has the /M memory protect option AND
2) Setup eF is issued after the system is configured as desired.

Address: Any master analog address
Remarks: Gains can range from $0.25(0400 \mathrm{H})$ to $4(4000 \mathrm{H})$
Gain (slope) instructions along with the offset instructions make it possible for an input to be adjusted to "Fill" the entire1000H to 1 FFFH range

Gains larger than 1 result in lowered resolution
Special response N07 is returned if a gain is out of range
Caution: Do not use this instruction with temperature inputs

Instruction	Response
$>80 \mathrm{Y} 20010 \mathrm{~F} 33111 \mathrm{C} 36 \mathrm{CR}$	ACR

Instruction content:

$M A=80$	$=$ Master Analog Address
Y	$=$ Function code
$\mathrm{c}=2001$	$=$ Position field. 1 's select which modules are effected, 0 's are disregarded. For more information see appendix A
$\mathrm{k}=0 \mathrm{~F} 33111 \mathrm{C}$	Gain, 4 hex digits are required for each module specified in the position field. Values are returned from Highest to lowest (15-0). Module 0 gain $=111 \mathrm{CH}$ Module 13 Gain $=0 \mathrm{~F} 33 \mathrm{H}$
()$=36$	= Checksum

Response Content:

$$
\mathrm{A}=\text { Acknowledgment }
$$

Instruction
$>M A \underline{N c l m}() \mathrm{CR}$

Response
Acr

Purpose: \quad Sets high and low range limits for specified analog inputs. If the actual analog input is above or below the specified range limit, a corresponding latch is set. This does not affect the value of the analog input.

Prerequisite: \quad Configure as input using setup G or H
Battery Backed: The underlined instruction data is saved in memory if:

1) The I/O Plexer has the /M memory protect option

AND
2) Setup eF is issued after the system is configured as desired.

Address: Any master analog address
Default: \quad Range limits are active. High range limit $(l)=$ FFFH and the low range limit $(m)=000 \mathrm{H}$

Remarks:
Outside of range latches remain set until a clear or reset instruction.
Gain and offset instructions are applied before range limit checking occurs

Caution:
Analog N range limits l and m consist of 3 hex digits ranging from 000 H to FFFh. These correspond to input module readings of 1000 H to 1 FFFн.

Example: \quad This instruction sets a high range of C 00 H and a low range of 400 H to module 9 and module 0 .

Instruction	Response
$>80 \mathrm{~N} 0201 \mathrm{C} 00400 \mathrm{~B} 0 \mathrm{CR}$	AcR

Instruction content:

$>$	$=$ Start of instruction character
$M A=80$	$=$ Master Analog Address
N	$=$ Function Code
$c=0201$	$=$ Position field. 1's select which modules are affected. 0 's
are disregarded. For more information see appendix A	
$l=\mathrm{C} 00$	$=3$ hex digit high range limit
$m=400$	$=3$ hex digit low range limit
$\left(\begin{array}{ll}\text { For more information on conversion equations and } \\ \text { calculations, refer to appendix C }\end{array}\right.$	
	$=5 \mathrm{~A}$

Response Content:
$\mathrm{A}=$ Acknowledgment

	Instruction	Response
O read all range errors	$>M A O(~) \mathrm{CR}$	Acd () CR
Q Clear Range errors	$>M A \mathrm{Q} e(\mathrm{CR}$	Acr
P Read and Clear errors	$>M A P e() \mathrm{CR}$	Acd () CR

Purpose:	Reads and/ or clears all range over/ under latches set when an analog input crosses a range limit specified by Analog N.
Prerequisite:	Configure as input using setup G or H.
Default:	Not applicable
Battery Backed:	Not applicable
Address:	Any master analog address
Remarks:	Out of range latches remain set until a clear or reset instruction is received. Gain and offset instructions are applied before range checking is done.
Caution:	Analog P reads all modules, but only clears the over/ under range latches for modules specified in the position field.

Instruction	Response
$>80 \mathrm{P} 20017 \mathrm{BCR}$	A 0002000183 CR

Instruction content:

$>$	$=$ Start of instruction character
$M A=80$	$=$ Master Analog Address
P	$=$ Function code
$\mathrm{e}=2001$	= Position field. 1's select which modules range errors are to be cleared, 0's are disregarded. IF this field is omitted, the I/O Plexer assumes a value of FFFFH. Leading hex zeroes may be omitted. For more information see appendix A
$(\mathrm{I}=7 \mathrm{~B}$	= Checksum

Response Content:

A	$=$ Acknowledgment
$c=0002$	= Position field 1's mean module is over-range 0 's are disregarded
$d=0001$	= Position field. 1's mean that the module is under-range O's are disregarded. For more information on the position field refer to appendix A
()$=83$	$=$ Checksum

Analog a,b,c,d,e,f

Instruction
a Read Lowest Values MAae()cr
b Clear Lowest Values MAbe()CR
c Read \& Clear Lowest MAce()CR
d Read Highest Values MAde()CR
e Clear Highest Values MAee()cr
f Read \& Clear Highest $\quad \operatorname{MAfe}(\mathrm{)CR}$

Response
A. . $k()_{\text {CR }}$

Acr
A. . . $k($) CR

A . . $k($ (CR
ACR
A..$k() \mathrm{CR}$

Purpose: \quad Minimum and maximum values are the lowest or highest values an I/O Plexer has read. These values are stored until a lower or higher value is read or a clear instruction or read and clear instruction is sent.

Analog c is equivalent to sending analog a and band analog f is equivalent to analog d and e. They return the data and clear out the buffer.

Prerequisites: \quad Configure as an input using setup G or H
Default: Always active. The minimum value is initially set to 2000 H . The maximum value is 1000 H

Battery Backed: Not applicable
Address: Any master analog address
Remarks: Offset and gain instructions are applied before testing for maximums and minimums.
Instruction Response
$>80 \mathrm{c} 20018 \mathrm{ECR}$

A19F8107CC3CR

Instruction content:

$M A=80$	$=$ Master Analog Address
c	$=$ Function code
$e=2001$	= Position field. 1's select which modules are to be acted on, 0's are disregarded. IF this field is omitted, the I/O Plexer assumes a value of FFFFH. Leading hex zeroes may be omitted. For more information see appendix A
$(\mathrm{y}=8 \mathrm{E}$	$=$ Checksum

Response Content:

A	$=$ Acknowledgment
$k=19 \mathrm{~F} 8107 \mathrm{C}$	=Minimum or maximum values. 4 hex digits are returned for each module specified in the instruction's position field. Values returned are ordered from highest (15) to lowest (0). If ??? is returned, an output or digital module was interrogated. Minimum value for module $0=107 \mathrm{CH}$ minimum value for module $13=19 \mathrm{~F} 8 \mathrm{H}$
$(\mathrm{m}=\mathrm{C} 3$	$=$ Checksum

Analog M

	Instruction	Response
M read and average	$>M A M b j(~) \mathrm{CR}$	$\mathrm{A} k()_{\mathrm{CR}}$

NOT RECOMMENDED!!! USE Analog T, i, U

Purpose:	Provide average value of single I/O Plexer module position over a specified number of samples
Prerequisite:	Configure as an input using Setup G or H
Default:	Averaging inactive
Battery Backed:	Not applicable
Address:	Any master analog address
Remarks:	Sample time $=(10 \mathrm{mSec} *$ number of analog inputs installed on board $)$
Formula:	Average $=($ Sum of j readings $) / \mathrm{j}$
Caution:	The analog M instruction accumulates samples only while the user waits, and waits-and waits. The I/O Plexer can receive no more instructions until averaging is complete. Furthermore no response is
sent to the host, therefore the host is tied up until the average is	
computed also.	

Example:
This instruction averages the next 240 samples for module 10. The response indicates an average of 1580 H
Instruction Response
>80MAF06CCR
A1580CECR
Instruction content:

>	$=$ Start of instruction character
$M A=80$	$=$ Master Analog Address
M	$=$ Function code
$\mathrm{b}=\mathrm{A}$	$=$ Module Position. This is a single character that represents a module position. The values can range from 0H (Module 0) to Fh (module 15)
$j=F 0$	$=$ number of samples - values can range from 1-255 (1FFH) samples. $\mathrm{jH}=$ Desired number of samplesh Convert to 2 hex digits.
()$=6 \mathrm{C}$	= Checksum

Response Content:

A	$=$ Acknowledgment
$\mathrm{k}=1580$	$=$ Response data. 4 hex digits are returned for each
module specified in the instruction's position feild. Values	
returned are ordered from highest (15) to lowest (0). If	
???? is returned an output or digital module was	
interrogated. 1580H is the average for module 10. For	
more information on the conversion and examples, refer to	
appendix C	

Instruction Response

T start averaging	$>M A T c j(~) \mathrm{CR}$	ACR
i averaging	$>M A \mathrm{i}(\mathrm{)CR}$	$\mathrm{Ac}(\mathrm{CR}$

Example:
This instruction starts averaging the next 31 samples on module 13 and 0 .
Instruction Response
>80T2001001F56CR
AcR

Instruction content

>	$=$ Start of instruction character
$M A=80$	$=$ Master Analog Address
$\mathrm{c}=2001$	$=$ Position field. 1's select which modules are to be averaged, 0's are disregarded. For more information see appendix A
$\mathrm{j}=001 \mathrm{~F}$	$=$ number of samples this number can range from 1 to 65535 or FFFFH $\mathrm{ju}=($ desired samples $) \mathrm{H}$ Convert to 4 hex digits
()$=56$	= Checksum

Example: \quad This instruction is requesting which modules have completed their averaging. The response says module 13 has completed averaging. Instruction

Response
$>80 \mathrm{iD} 1 \mathrm{CR}$
A2000C2CR

Response Content:

A	$=$ Acknowledgment
$c=2000$	= Position field 1's mean module has completed averaging, 0's mean that module is either not involved or still averaging
()$=\mathrm{C} 2$	$=$ Checksum

Analog U

	Instruction	Response
U Read Averaged Inputs	$>M A U e() \mathrm{CR}$	$\mathrm{A} . . k(\mathrm{CR}$

Purpose: | Provide the average value of a number of sequential samples of analog |
| :--- |
| inputs for the specified modules as determined by the Analog T and i |
| instruction. |

Prerequisite: \quad Averaging must be started by the use of analog T instruction.
Default: Averaging inactive
Battery Backed: Not applicable
Address: Any master analog address
Remarks: \quad Sample time $=(10$ milliseconds $*$ number of analog inputs on board $)$
If analog U instruction reads an average before analog i indicates the total number of samples have been accumulated, it provides the correct average for the number of samples already taken. However the number of samples used in this calculation can not be obtained.

Analog U will keep reading the last average until analog T is reissued.

Example:
This example reads the average of module 13 and module 0 at analog address 80
Instruction Response
$>80 \mathrm{U} 200180 \mathrm{CR}$
A19F6107ABFCR

Instruction content:

$$
\begin{array}{ll}
M A=80 & =\text { Master Analog Address } \\
\mathrm{U} & =\text { Function code } \\
e=2001 & \begin{array}{l}
\text { =Position field, 1's give the average for that module. } 0 \text { 's } \\
\text { are disregarded. IF this field is omitted FFFFH is assumed } \\
\text { by the I/O Plexer . Leading Hex zeroes may be omitted. } \\
\\
\text { For more information on the position field refer to } \\
\text { appendix A }
\end{array} \\
()=80 & =\text { Checksum }
\end{array}
$$

Response Content:

\[

\]

Analog K

	Instruction	Response
k Set Temperature Sensor Type	$>M A \underline{\mathrm{k} c x}(\mathrm{CR}$	ACR

Purpose: This instruction defines the type of temperature modules installed so that the I/O Plexer firmware can linearize the signal and output a temperature in ${ }^{\circ} \mathrm{C}$ to the host when asked.

Prerequisite: \quad Configure as an input using setup G or H
Default: None

Battery Backed: The underlined instruction data is saved in memory if:

1) The I/O Plexer has the /M memory protect option AND
2) Setup eF is issued after the system is configured as desired.

Address: Any master analog address.
Remarks: Cold reference compensation and linearization is taken care of at the module location. The user needs to convert the number to decimal and divide by 16 for a correct temperature reading.

Example:

This instruction sets up modules $4,5,9$, and 12 as type J
thermocouple.
Instruction Response
$>80 \mathrm{k} 123004 \mathrm{FDCR}$
ACR
Instruction content:

$>$	$=$ Start of instruction character
$M A=80$	$=$ Master Analog Address
k	$=$ Function code
$\mathrm{c}=1230$	= Module Position. 1's specify which modules are to perform the instruction on, 0's are disregarded. For more information refer to appendix A
$\mathrm{x}=04$	$=2$ digit hex number representing the temperature module
type from table below	

duTec module type	set \mathbf{x} to	dutec module type	set \mathbf{x} to
ITCJ	04 H	ITCK-1	15 H
ITCJ-1	14 H	100 RTD Probe	03 H
ITCK	05 H	590 Sensor	01 H

Response Content:

A $=$ Acknowledgment

Analog l

	Instruction	Response
ℓ Read Temperature	$>$ MAle($) \mathrm{CR}$	A..$k()_{\mathrm{CR}}$

Purpose: \quad To read latest temperature inputs of specified modules
Prerequisite: Analog k must be issued for the appropriate temperature
Default: \quad Configure as input using setup G or H
Battery Backed: Not applicable

Address: Any master analog address.
Remarks: \quad Channels which read below scale return EFF0H $\left(-273{ }^{\circ} \mathrm{C}\right)$ Channels which read above scale return 7FF0H ($2047{ }^{\circ} \mathrm{C}$)

Caution: Unconnected analog input modules may result in unpredictable readings

Example: \quad This instruction requests the temperature from module 9 and module 0 .

Instruction	Response
$>80 \ell 020197 \mathrm{CR}$	A015FFF00C8CR

Instruction content:

$>$	$=$ Start of instruction character
$M A=80$	$=$ Master Analog Address
ℓ	$=$ Function code
$\mathrm{e}=0201$	
	$=$ Position field, 1's specify which modules to act on. 0 's
are disregarded. IF this field is omitted FFFFH is assumed	
by the I/O Plexer . Leading Hex zeroes may be omitted.	
	For more information on the position field refer to appendix A
()$=97$	
	$=$ Checksum

Response Content:

A	$=$ Acknowledgment
$\mathrm{k}=015 \mathrm{FFF} 00$	$=$ The I/O Plexer returns a k for each module selected, the first 3 characters represent degrees Celsius and the last character is a fraction of 16 $015 \mathrm{Fh}=$ Module 9 FF00H $=$ Module 0 Temp ${ }^{\circ} \mathrm{C}=$ convert each k to decimal / 16 module $0=$ temp ${ }^{\circ} \mathrm{C}=(351 \mathrm{D}) / 16=21.9^{\circ} \mathrm{C}$ If the first hex digit in a response is an F, then the temperature is negative. To take negative numbers into account, 65536 must be subtracted. Temp ${ }^{\circ} \mathrm{C}=(($ Convert k to decimal) $-65536 / 16)$ Module $0{ }^{\circ} \mathrm{C}=(65280-65536) / 16=-16{ }^{\circ} \mathrm{C}$
()$=C 8$	= Checksum

Other helpful formulas:
To convert to ${ }^{\circ}$ Fahrenheit $\left.\quad{ }^{\circ} \mathrm{F}=\left(9 / 5 *{ }^{*} \mathrm{C}\right)+32\right)$
Introduction 3-136
Status 3-138

J Set All
S Set selected Levels
K Read Levels
$\begin{array}{ll}\text { Waveform Introduction } & \text { 3-144 }\end{array}$

Waveform 3-148
R Terminate waveform
Squarewave
Triangle UP
Triangle Down
Sawtooth UP
Sawtooth Down
Ramp UP
Ramp Down

Waveforms (Improved) 3-152
V Terminate waveform
squarewave
Triangle- Up
Triangle -Down
Sawtooth -Up
Sawtooth -Down
Ramp -Up
Ramp -Down

ANALOG OUTPUT INTRODUCTION

Purpose: \quad To send specific output values or timed waveforms to the hardware.

Resolution:

Caution:

Analog outputs have 12 bit resolution. Their data is stored in 3 hex digits from $0(000 \mathrm{H})$ to 4095 (FFFH).

Field side circuitry may affect the actual output values of analog modules.

Analog R. . 7, V . . 7
Sawtooth DOWN

Analog R. . 2, V . . 2
Ramp UP

Analog R. . 6, V . . 6 Ramp DOWN

Instruction Response

J Set Levels (Same) $\quad>\operatorname{MAJ} \operatorname{cl}($) $\mathrm{CR} \quad \mathrm{AcR}$
Purpose: \quad Outputs the same value to each specified module

Prerequisite: \quad Configure as outputs using setup G or I

Default: None

Battery Backed: Not Applicable

Address: Any Master analog address

Example:
This instruction sets modules 12 and 1 to BFFH.

Instruction	Response
$>80 \mathrm{~J} 1002 \mathrm{BFF} 43 \mathrm{CR}$	$>\mathrm{ACR}$

Instruction content:

$>$	$=$ Start of instruction character
$M A=80$	$=$ Master Analog Address
$\mathrm{J}=1002$	$=$ Function code
$l=\mathrm{BFF}$	= Position field, 1's specify which modules to set to the level. 0's are disregarded. For more information on the position field refer to appendix A
$\left(\begin{array}{l}\text { Output level. 3 hex digits represent the level for all } \\ \text { specified modules. For more information on the } \\ \text { conversion refer to appendix D. }\end{array}\right.$	
	$=43$

Response Content:
A = Acknowledgment
Instruction Response

S Set selected Levels
$\begin{array}{ll}\text { Purpose: } & \begin{array}{l}\text { Outputs different specified values to each module chosen in the } \\ \text { position field. }\end{array}\end{array}$

Default: None
Battery Backed: Not applicable
Address:
$>M A S c \ldots . . l($)CR ACR

Prerequisite: \quad Configure module positions as outputs using setup G or I.

Any master analog address

Instruction Response
>80S1002BFF01FEACR

Acr

Instruction content:
\(\left.\begin{array}{ll}> \& =Start of instruction character

M A=80 \& =Master Analog Address

S=1002 \& =Function code

l=BFF01F \& =Position field, 1's specify which modules to set to the

level. 0's are disregarded. For more information on the

position field refer to appendix A\end{array}\right\}\)| Output level. 3 hex digits represent the level for all |
| :--- |
| specified modules. |
| Module levels are specified ordered from highest (15) to |
| lowest (0) positions. BFFH = module 12 |
| |
| 01FH = module 1 |

Response Content:
A = Acknowledgment

Analog K

	Instruction	Response K Read Levels
Purpose: Reads the last value sent to the module		
Prerequisite:	Configure as outputs using the Setup G or I	

This instruction is requesting the last output value sent to module 13 and module 0 .

Instruction Response
$>80 \mathrm{~K} 200176 \mathrm{CR}$

A0ACBFB7Ecr

Instruction content:

$M A=80$	$=$ Master Analog Address
K	$=$ Function code
$\mathrm{e}=2001$	= Position field, 1's specify which modules to be read. 0 's are disregarded. IF this field is omitted FFFFH is assumed by the I/O Plexer . Leading Hex zeroes may be omitted. For more information on the position field refer to appendix A
$(\mathrm{O}=76$	$=$ Checksum

Response Content:
\(\left.\begin{array}{ll}A \& =Acknowledgment

1=0 \mathrm{ACBFB} \& =Response data, 3 hex digit specifies the value of each of

the modules selected by the position field. The values are

returned ordered from highest to lowest(15-0) ? ? ? ? is

returned if an analog input or a digital module was

interrogated.

0 \mathrm{ACH}=module 13 level

\mathrm{BFBH}=Module 0 level\end{array}\right\}\)| $=$ Checksum |
| :--- |

WAVEFORM INTRODUCTION

Analog R, V

Purpose:	Output analog signals whose amplitudes change with time.
Prerequisite:	Configure as outputs using setup G or I
Default:	Instructions inactive
Battery Backed:	Not applicable
Address:	Any master analog address
Remarks:	The period of a waveform is the time for one complete cycle of a squarewave, triangle or sawtooth.

The duration of a ramp is the time from its minimum amplitude until it reaches its maximum amplitude.

Up means starting at minimum and rising to maximum amplitude

Down means starting at maximum and falling to minimum amplitude

The p and q fields specify the waveforms maximum and minimum amplitude.
$\mathrm{p}=$ Waveform peak or maximum amplitude
$\mathrm{q}=$ Waveform valley or minimum amplitude

Analog R

Asymmetrical

Analog \mathbf{R}

Instruction
R Waveforms (repetitive)
Squarewave
Squarewave
Triangle up
Triangle Down
Terminate
$>M A \mathrm{Rcw} 0 p q() \mathrm{CR}$
$>M A R c w 4 p q() \mathrm{CR} \quad \mathrm{AcR}$
$>M A \mathrm{R} c w 1 p q() \mathrm{CR}$
$>M A \mathrm{R} c w 5 p q($) CR
$>M A R c 0$ () CR

Acr
ACR
Acr
Response

Acr

NOT RECOMMENDED!! USE ANALOG V

Remarks: The two squarewave instructions are identical.

Reference: For general information about waveforms, refer to the waveform introduction.
Example: This instruction turns on a squarewave at module 9 and module 0 with a period of 13.13 minutes, a maximum amplitude of C 0 H and a minimum amplitude of 40 H .

Instruction	Response
$>80 \mathrm{R} 020154 \mathrm{C} 040 \mathrm{BDCR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
$M A=80$	$=$ Master Analog Address
R	$=$ Function code
$\mathrm{c}=0201$	= Position field, 1's specify which modules are affected. 0's are disregarded. For more information on the position field refer to appendix A

$\mathrm{w}=5=\quad$ Waveform period. This must be chosen from the table on the next page. To calculate which one is needed: Desired period $=($ Maximum amplitude - Minimum amplitude)/ module range * full scale period from the table. The 1 hex digit from the table is what is entered in the field.

Triangle wave and squarewave zero to full scale period

w	Time	w	Time
0	Terminate Waveform	8	2.18 Minutes
1	4.37 Minutes	9	1.09 Minutes
2	6.56 Minutes	A	43.6 Seconds
3	8.74 Minutes	B	32.8 Seconds
4	10.92 Minutes	C	26.2 Seconds
5	13.13 Minutes	D	21.8 Seconds
6	15.30 Minutes	E	18.8 Seconds
7	17.48 Minutes	F	16.4 Seconds

$4=$ Function code modifier specifying type of waveform.
$\mathrm{p}=\mathrm{C} 0=$ Maximum waveform amplitude in 2 hex digits.
$\mathrm{PH}=(($ Desired amplitude/ module range $) * 256) \mathrm{H}$
Note This has 8 bit resolution, NOT 12 bit.
$\mathrm{q}=40=$ Minimum waveform amplitude in 2 hex digits
Follow conversion shown above
() = BD = Checksum
Response:
A = Acknowledgment

Analog R (continued)

Instruction Response

R Waveforms (Repetitive)		
Sawtooth - up	>MARcv3pq() CR	Acr
Sawtooth - Down	>MARcv7pq()CR	Acr
R Waveforms(Not repetitive)		
Ramp - up	$>M A \mathrm{R} c v 2 p q() \mathrm{CR}$	Acr
Ramp - Down	>MARcv6pq()CR	Acr
Terminate	$>M A \mathrm{R} c 0$ () CR	Acr

NOT RECOMMENDED!! Use Analog V

Remark: Ramp waveforms terminate when they reach their upper or lower limit.

Reference: For general information about waveforms, refer to the waveform introduction.

Example: \quad This instruction turns on a positive sawtooth waveform at module 9 and 0 . A maximum amplitude of 80 H and a minimum of 20 H .

Instruction Response
>80R0201938020B3 ACR

Instruction content:

$>$	$=$ Start of instruction character
80	$=$ Master Analog Address
R	$=$ Function code

$\mathrm{C}=0201=$ Position field. 1's specify which module positions are to produce the desired wave. 0 's are disregarded.

For more information, refer to appendix A.
$\mathrm{v}=9$ = Waveform period or duration. To calculate which one is needed:
Desired Period= (Maximum amplitude - Minimum amplitude)/
Module range * full scale period or duration from the table.
The one hex digit from the table is what is entered in the field.
Sawtooth period and ramp duration (zero to zero full scale)

v	Time	v	Time
0	Terminate	8	1.09 Minutes
1	2.18 Minutes	9	32.8 Minutes
2	3.28 Minutes	A	21.8 Seconds
3	4.37 Minutes	B	16.4 Seconds
4	5.46 Minutes	C	13.1 Seconds
5	6.56 Minutes	D	10.9 Seconds
6	7.65 Minutes	E	9.4 Seconds
7	7.84 Minutes	F	8.2 Seconds

$$
\left.\begin{array}{cl}
3 & =\text { Function Code specifying type of waveform } \\
\mathrm{p}=80 & =\text { Maximum waveform amplitude in } 2 \text { hex digits } \\
\mathrm{pH}=((\text { Desired amplitude/ module range }) * 256) \mathrm{H} \\
\text { Note: This field only has } 8 \text { bit resolution NOT } 12 \text { bit. }
\end{array}\right\} \begin{aligned}
& \text { =Minimum waveform amplitude, follow conversion } \\
& \mathrm{q}=20
\end{aligned} \quad \begin{aligned}
& \text { shown above } \\
& (\mathrm{O}=\mathrm{B} 3
\end{aligned} \quad \begin{aligned}
& \text { Checksum }
\end{aligned}
$$

Response
Acknowledgment

Analog V

	Instruction	Response
V Improved waveforms (repetitive)		
Squarewave	$>M A V c 4 p q s() \mathrm{CR}$	Acr
Triangle - Up		Acr
Triangle - Down	$>M A V c 5 p q s(~) c R$	Acr
Terminate	$>\mathrm{MAV} c 0$ () CR	Acr

Reference: For general information about waveforms, refer to the waveform introduction.

Example 1: \quad This instructs the I/O Plexer at address 80 to output a triangle up wave at module 1 with a maximum amplitude of FFFH, a minimum valley of 123 H and a duration of 1 second.

Instruction Response
$>80 \mathrm{~V} 00021 \mathrm{FFF} 123000 \mathrm{AEACR} \quad \mathrm{AcR}$
Instruction content:
\(\left.\begin{array}{cl}80 \& =Master Analog Address

0002 \& =Position field, 1's specify which modules to be read. 0's

are disregarded. For more information on the position

field refer to appendix A\end{array}\right\}\)| = Function code specifying type of waveform | |
| :--- | :--- |
| 1 | $=$ Waveform maximum amplitude in 3 hex digits, refer to |
| $\mathrm{q}=123$ | appendix D |
| | = Waveform minimum amplitude in 3 hex digits. For
 more information refer to appendix D |

$$
\begin{array}{ll}
\mathrm{s}=000 \mathrm{~A} & \begin{array}{l}
\text { = Waveform period in } 1 \text { to } 4 \text { hex digits, For more } \\
\text { information refer to appendix D }
\end{array} \\
()=\text { EA } & =\text { Checksum }
\end{array}
$$

Response Content:
$\mathrm{A}=$ Acknowledgment
Example 2: \quad This instruction terminates the waveform at module 1.

Instruction	Response
$>80 \mathrm{~V} 00020 \mathrm{~B} 0$	ACR

Instruction content:

$M A=80$	$=$ Master Analog Address
V	$=$ Function code
$\mathrm{c}=0002$	=Position field, 1's specify which modules to be read. 0's are disregarded. For more information on the position field refer to appendix A
0	$=$ Function code specifying waveform termination
$(\mathrm{O}=\mathrm{B} 0$	$=$ Checksum

Response Content:
$\mathrm{A}=$ Acknowledgment

Analog V (Continued)

Instruction
V Improved waveforms (repetitive) Sawtooth Up $>M A V c 3 p q r(~) \mathrm{CR} \quad$ AcR Sawtooth Down $>M A V c 7 p q r($)CR ACR V Improved Waveforms (One shot) Ramp-Up
$>M A V c 2 p q r($)CR AcR
Ramp-Down
Terminate
$>M A V c 6 p q r() \mathrm{CR}$
$>\operatorname{MAV} C 0($ $) \mathrm{CR} \quad \mathrm{ACR}$

Reference: \quad For general information about waveforms, refer to the waveform introduction

Example: This instructs the I/O Plexer at address 80 to output a ramp-up wave at module2. The ramp begins at 123 H and rises to its final value of FFFH during a period of 1 second. The output will stay at FFFH until another output instruction is sent to this module.

Instruction	Response
$>80 \mathrm{~V} 00022 \mathrm{FFF} 123000 \mathrm{AEBCR}$	ACR

Instruction content:

$M A=80$	$=$ Master Analog Address
v	$=$ Function code
$\mathrm{c}=0002$	=Position field, 1's specify which modules to be read. 0 's are disregarded. For more information on the position field refer to appendix A
2	$=$ Function code for specifying waveform type
$\mathrm{p}=\mathrm{FFF}$	= Waveform maximum amplitude in 3 hex digits. For

$q=123$	= Minimum waveform amplitude. Follow conversion shown above.
$\mathrm{r}=000 \mathrm{~A}$	= Waveform period or ramp duration Waveform period $=($ desired period in seconds $* 10)$ Convert to hex digits
	$=$ Checksum

Response Content:

Acknowledgment

SERIAL I/O INTRODUCTION

Purpose: This series of instructions is for use with the I/O Plexer's local RS-232 port. This allows the host to exchange information with an RS-232 device.

Page

Baud Rate 3-158
N Local port baud rate
Host to Slave 3-160
O Host to Slave message
Message for Host 3-162
P Message for Host
PP partial message

Serial N

	Instruction	Response
N Local RS-232		
Baud Rate	$>M C \underline{\mathrm{Nh}}($)CR	ACR

Purpose: \quad Sets the baud rate of the local RS-232 port
Prerequisite: None
Default: \quad Baud Rate $=300$

Battery Backed: The underlined instruction data is saved in memory if:

1) The I/O Plexer has the /M memory option

AND
2) Setup eF instruction is issued after the system is configured as
desired.

Address: Any master control address.
Remarks: The baudrate of the local port does not have to match the baud rate of the host port. They are two separate entities.

This protocol 1 start bit, 1 stop bit, 8 data bits, no parity, baud rate selectable, and 80 - character buffer

Caution:
The baud rate is reset to 300 on power up if not battery backed.
Example: This instruction sets the local RS-232 port at 2400 baud.

Instruction	Response
$>00 \mathrm{Nj} 18 \mathrm{CR}$	ACR

Instruction content:

$>$	$=$ Start of instruction character
$M C=00$	$=$ Master Control Address
N	$=$ Function code
$h=\mathrm{j}$	$=$ Baud rate from the table below.

Local RS-232 Port

Baud rate $=$	300	600	1200	2400	4800	9600	19200
set $\mathrm{h}=$	e	f	h	j	l	m	n

() = $18=$ Checksum
Response content:
$\mathrm{A}=$ Acknowledgment

Serial 0

Instruction
O Host to slave message
$>M C 0$ (Message)()CR
Allows the host computer to send messages to an external RS-232 device connected to the I/O Plexer local RS-232 port.

Prerequisite: None
Default: None
Battery backed: Not applicable
Address: Any master control address
Remarks: \quad Serial O returns a N12 response message if the remaining free space in the internal local port buffer in the I/O Plexer cannot accommodate the full message being sent by the host. This buffer is circular and can hold more than one message at a time. A message is rejected if it cannot fit in the buffer in its entirety. It should be sent again after the local device has had time to read the previous message.

The codes, $>$, CR, and codes 80 H through FFH may not be included in network traffic from the host.
/ and \backslash Have special meanings as described below. Any character (0H to FFH) may be sent by embedding the "/" (forward slash) followed by the 2 digit hex code for the character. For example, if we wanted to say "and/or" we would put it in as "and /2For" Appendix H has a Hex/ Decimal/ ASCII table

Messages between the host and an I/O Plexer can contain up to 80 transmitted characters.

Caution: $\quad \mathrm{A} \backslash$ in the message outputs a $C R$ and a line feed. Multiple \backslash 's can be used, each results in a CR and a line feed at the receiving device. $C R$ cannot be sent because it is interpreted as an end of message character.

The start of message character, $>$, in a host-to-slave message can not be used, because it is interpreted as a new message. It can be sent using the embedding technique.

Example: \quad This sends a message to the slave "your own message here!"
Instruction Response
>120 Your very own message here! A5CR ACR
Message as seen at the slave:
Your own message here !

Serial P, PP

Instruction Response

P Message for Host?	$>M C P($) CR	A(Message)()CR
PP Partial	$>M C P P($)CR	A(Message)()CR

Purpose: Allows the Host to read the local RS-232 port device message
Default: None
Battery Backed: Not applicable
Address: Any master control address
Remarks: \quad Messages between the I/O Plexer and host can contain up to 80 printable ASCII characters.

Mechanisms for sending ,>, and CR, characters not allowed in network traffic, depend on an agreement between the host and slave and is outside the control of the I/O Plexer.

Caution: Serial PP reads the data gathered at the local RS-232 port whether or not whether or not a carriage return was received. This could be a partial message. Partial messages read are not duplicated in the next read.

[^1]| Instruction | Response |
| :--- | :--- |
| $>00 \mathrm{PP} 00 \mathrm{CR}$ | ATurn PumFBCR |

Later.
$>00 \mathrm{PP} 00 \mathrm{CR}$
Ap On!6ECR
Doing the above sequence with Serial P
$>00 \mathrm{~PB} 0 \mathrm{CR} \quad \mathrm{AcR}$
Later.
$>00 \mathrm{~PB} 0 \mathrm{CR}$
A Turn pump On! 69 CR

APPENDICES

Most I/O Plexer instructions have a position field following the function code. The contents of this field determine which modules are affected by the instruction. Some functions affect all modules, in these, the position field determines what the effect is for each module. In either case, the construction of the position field follows the same rules.

The position field is a 4 hex digit representation of a 16 digit number. The position field is a 16 digit number (one digit for each possible module) but each digit can only be a 1 or a 0 . (These digits are called bits)

To fill the position field, perform the following steps:

1. Make a list of the modules that the instruction is to affect, for example: $0,3,8,12$, and 15.
2. Make a 16 digit number with a 1 in each position listed in step 1 and a zero in all other positions. The leftmost digit of the number is module 15 , the right most is module 0 . The number for our example is:

1001000100001001

3. Divide the number built in step 2 into four 4 digit numbers. Our example appears as: 1001000100001001.
4. Using the table below, look up each of the 4 digit numbers in step 3 and replace it with the corresponding hex number or letter. Our example becomes 9109H. This is the value that should be put in the position field of the instruction. This table is on the Quick reference guide for easy access.

Module\#: $\quad 15141312 \quad 1110 \quad 9 \quad 8 \quad 7 \begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$ $-1^{\text {st }}$ Char- $\quad-2^{\text {nd }}$ Char- $\quad-3^{\text {rd }}$ Char- $\quad-4^{\text {th }}$ Char-

Bit pattern	0000	0001	0010	0011	0100	0101	0110	0111
Hex Digit:	0	1	2	3	4	5	6	7
Bit Pattern:	1000	1001	1010	1011	1100	1101	1110	1111
Hex Digit:	8	9	10	11	12	13	14	15

5. It is always acceptable to use a 4-digit value in a instruction which requires a position field. Some instructions also accept an abbreviated version which has had the leading hex zeroes omitted. In some instructions the position field is optional and assumes a value of FFFFH (all modules affected) if it is omitted.

Setup eC instruction tags correct checksum to the end of the N02 response message. Transmit instruction $>00 \mathrm{eC} 08 \mathrm{CR}$. Now any instruction can be assembled in the usual manner, but enter 00 for checksum. The unit returns a N02 response message plus the correct checksum.

Wild card: If ?? is added to the instruction instead of a checksum, the instruction is executed. It sends a "don't care" value for checksum. This method is not recommended for programming because it does not insure proper communication error checking.

Calculation method: Checksum can also be obtained by adding all decimal values of ASCII characters that make up an instruction or response (exclude $>$ for instructions and A for responses). Repeatedly subtract 256 from this sum until the remainder is less than 256 . The checksum is the 2 digit hex equivalent of the remainder.

Example:

Instruction		Response
$>80 \mathrm{~L} 0800(~) \mathrm{CR}$		A1CAC()CR
Instruction		
Character		ASCII
8	Value	
8	56	
0	48	
L	76	
0	48	
8	56	48
0	$\frac{48}{380}$	
0		
$380 \mathrm{D}-256 \mathrm{D}=124 \mathrm{D}=7 \mathrm{CH}$		

The checksum is 7 CH and the complete instruction is:
$>80 \mathrm{~L} 08007 \mathrm{CCR}$

The response is:

Character	ASCII
1	49
C	67
A	65
C	$\underline{67}$
	$248 \mathrm{D}=\mathrm{F} 8 \mathrm{H}$

The checksum is F 8 H and the complete response is: A1CACF8CR
Note: \quad The ASCII values can be obtained from appendix H .

Analog L, a, c, d, f, M, U k data field

ResponseD $=\{(\mathrm{k}-4096) / 4095\} *(\mathrm{~F}-\mathrm{Z})+\mathrm{Z}$
Where:
ResponseD is actual value in the same engineering units as F and Z .
k is the 4 digit hex response from the I/O Plexer converted to decimal.
F is the full scale value of the module and Z is the zero scale of the module.
These are shown for the standard modules in the table below.

DuTec Module	F	Z	Units
IV50M	50	0	mVolts
IV100M	100	0	mVolts
IV1	1	0	Volts
IV5	5	0	Volts
IV10	10	0	Volts
IV5B	5	-5	Volts
IV10B	10	-10	Volts
II420	20	4	mAmps

Analog L, a, c, d, f, M, U k data field (Continued)
Example: $\mathrm{k}=19 \mathrm{FCH}=6652 \mathrm{D}$
II420 Module

$$
\begin{aligned}
\text { Response valueD } & =[(\{6652-4096\} / 4095) *(20-4)+4] \\
& =[(2556 / 4095) * 16+4] \\
& =[(0.624) * 16+4] \\
& =9.984+4 \\
& =13.984 \mathrm{~mA}
\end{aligned}
$$

Analog g, h k Data Field

If the first hex digit is F , then the value represents a negative offset. Use the formula that applies.

$$
\begin{aligned}
& \text { Positive Offset } \\
\text { OffsetD }= & {[(\mathrm{k} / 4095) *(\mathrm{~F}-\mathrm{Z})]+\mathrm{Z} } \\
& \text { Negative Offset } \\
& (\text { First digit is } \mathrm{F}) \\
\text { OffsetD }= & \{[(\mathrm{k}-65536) / 4095] *(\mathrm{~F}-\mathrm{Z}]\}+\mathrm{Z}
\end{aligned}
$$

Where:

Offset is the actual offset in decimal as seen by the I/O Plexer.
k is the 4 digit hex value converted to decimal that was returned by the I/O
Plexer. The formula to use is chosen based on the first digit of this number
F is the full scale value of the module and Z is the zero scale value of the module.
These are shown for the standard modules in the table below.

DuTec Module	F	Z	Units
IV50M	50	0	mVolts
IV100M	100	0	mVolts
IV1	1	0	Volts
IV5	5	0	Volts
IV10	10	0	Volts
IV5B	5	-5	Volts
IV10B	10	-10	Volts
II420	20	4	mAmps

Example: $k=01 \mathrm{FFH}=511 \mathrm{D}$
IV5B Module
OffsetD $=[(511 / 4095) *(5-\{-5\})]+\{-5\}$
$=[0.125 * 10]-5$
$=1.25-5$
$=-3.75$ Volt Note: This is a -5 to 5 Volt Module!!
Example: $k=F C 00 H=64512 \mathrm{D}$
IV10 Module
OffsetD $=\{[(64512-65536) / 4095] *[10-0]\}+0$
$=\{[-1024 / 4095] * 10\}+0$
$=\{-0.25 * 10\}+0$
$=-2.5$ Volt

Analog W k data field

Negative offset calculations are taken care of by subtracting the value from 65,536. Please use the appropriate formula.

$$
\begin{gathered}
\text { Positive Offset } \\
\mathrm{k}=[(\text { Desired }-\mathrm{Z}) /(\mathrm{F}-\mathrm{Z})] * 4095 \\
\text { Negative Offset } \\
\mathrm{k}=65536+\{[(\text { Desired }-\mathrm{Z}) /(\mathrm{F}-\mathrm{Z})] * 4095\}
\end{gathered}
$$

Where:
K is the decimal number that is converted to its 4 digit hex value and plugged into the instruction.
Desired is the actual offset you want in the same engineering units as F and Z .
F is the full scale value of the module and Z is the zero scale of the module. These are shown for the standard modules in the table below.

DuTec Module	F	Z	Units
IV50M	50	0	mVolts
IV100M	100	0	mVolts
IV1	1	0	Volts
IV5	5	0	Volts
IV10	10	0	Volts
IV5B	5	-5	Volts
IV10B	10	4	Volts
II420	20	mAmps	

Analog W k data field (Continued)

Example:
Desired $=0.02$ Volts IV1 Module
$\mathrm{k}=\quad[(0.02-0) /(1-0)] * 4095$
$\mathrm{k}=\quad[0.02 / 1] * 4095$
$\mathrm{k}=\quad 0.02 * 4095$
$\mathrm{k}=\quad 81.9 \mathrm{D}=0051 \mathrm{H}$
Example: \quad Desired $=-11$ Volts IV10B Module

$$
\begin{aligned}
& \mathrm{k}=65536+\{[(-11-[-10]) /(10-[-10])] * 4095\} \\
& \mathrm{k}=65536+\{[(-11+10) / 20] * 4095\} \\
& \mathrm{k}=65536+\{[-1 / 20] * 4095\} \\
& \mathrm{k}=65536+\{-0.05 * 4095\} \\
& \mathrm{k}=65536-204.75 \\
& \mathrm{k}=65331 \mathrm{D}=\mathrm{FF} 33 \mathrm{H}
\end{aligned}
$$

Analog X, Z, k data field

GainD = k / 4096
Where:
Gain is the decimal value of the gain set by the I/O Plexer.
k is the 4 digit hex k data field converted to decimal.
Example:
k returned is $1800 \mathrm{H}=6144 \mathrm{D}$

$$
\begin{aligned}
& \text { Gain }=6144 / 4096 \\
&=1.5
\end{aligned}
$$

Analog Y k data field

$\mathrm{k}=($ Desired $* 4096) \quad$ Convert to 4 hex digits
Where:
k is the four hex digit data entered in the instruction.
Desired is the actual decimal value required.
Example:
Desired $=1.1$
$\mathrm{k}=1.1 * 4096$
$\mathrm{k}=4505.6 \mathrm{D}=1199 \mathrm{H}$

Analog N I \& m data field

These two fields set the upper and lower range limits. Any time an analog input goes above or below these limits a latch is set. These values are set using a 3-digit hex value. The 1000 H offset is not used on these values.

1 or $m=\{[($ RangeD -Z$) /(\mathrm{F}-\mathrm{Z})] * 4095\}$ Convert to 3 hex digits.
Where:
1 or m is a value that needs to be converted to 3 hex digits and entered into the instruction.
Range D is the actual range value that is desired in the same engineering units as F and Z.

F is the full scale value of the module and Z is the zero scale of the module. These are shown for the standard modules in the table below.

DuTec Module	F	Z	Units
IV50M	50	0	mVolts
IV100M	100	0	mVolts
IV1	1	0	Volts
IV5	5	0	Volts
IV10	10	0	Volts
IV5B	5	-5	Volts
IV10B	10	-10	Volts
II420	20	4	mAmps

Analog N 1 \&m data field (Continued)

Example:
IV5B Module
Upper Limit $=4$ Volts
Lower limit $=-4$ Volts
Upper limit
$1=\{[(4-[-5]) /(5-[-5])] * 40095\}$
$1=\{[(4+5) /(5+5)] * 4095\}$
$1=\{[9 / 10] * 4095\}$
$1=3685.5=\mathrm{E} 65 \mathrm{H}$
Lower Limit
$\mathrm{m}=\{[(-4-[-5])] /(5-[-5])] * 4095\}$
$m=\{[(-4+5) /(5+5)] * 4095\}$
$\mathrm{m}=\{[1 / 10] * 4095\}$
$\mathrm{m}=409.5=199 \mathrm{H}$

Analog J and S I data field:

$1=\{[($ DesiredD -Z$) /(\mathrm{F}-\mathrm{Z})] * 4095\}$ Convert to 3 hex digits.
Where:

1 is the 3 digit value to be entered into the instruction.
DesiredD is the actual value desired in decimal based on the module units. For example, if you want a module to read 2.5 Volts then DesiredD $=2.5$

F is the full scale value of the module and Z is the zero scale of the module. These are shown for the standard modules in the table below.

DuTec Module	F	Z	Units
OV5	5	0	Volts
OV10	10	0	Volts
OI420	20	4	mAmps

Example: $\quad 3.6$ Volts output by a OV10 Module

$$
\begin{aligned}
1 & =[(3.6-0) /(10-0)] * 4095 \\
& =0.36 * 4095 \\
& =1474.2
\end{aligned}
$$

$=5 \mathrm{C} 2 \mathrm{H}$ is the value entered in the 1 data field.

Analog k 1 data field:

ResponseD $=[(1 / 4095) *(\mathrm{~F}-\mathrm{Z})+\mathrm{Z}]$
Where:
Response is actual value read by the input in engineering units.
1 is the 3 digit hex value converted to decimal.
F is the full scale value of the module and Z is the zero scale of the module. These are shown for the standard modules in the table below.

DuTec Module	F	Z	Units
OV5	5	0	Volts
OV10	10	0	Volts
OI420	20	4	mAmps

Example: $\quad 78 \mathrm{FH}$ is returned from a OI420 Module
$78 \mathrm{FH}=1935 \mathrm{D}$

$$
\begin{aligned}
\text { ResponseD } & =(1935 / 4095) *(20-4)+4 \\
& =0.473 * 16+4 \\
& =7.56+4 \\
& =11.56 \mathrm{~mA}
\end{aligned}
$$

Analog V p and q data field:

p or $\mathrm{q}=[$ DesiredD -Z$) /(\mathrm{F}-\mathrm{Z}) * 4095$ Convert to 3 hex digits
Where:
p or q is the 3 hex digit value entered in the instruction.
DesiredD is the amplitude desired in engineering units
F is the full scale value of the module and Z is the zero scale of the module. These are shown for the standard modules in the table below.

DuTec Module	F	Z	Units
OV5	5	0	Volts
OV10	10	0	Volts
OI420	20	4	mAmps

Example: 18 mA is the desired maximum amplitude and 7 is the desired minimum amplitude for a OI420 ($4-20 \mathrm{~mA}$) Module

$$
\begin{aligned}
& \mathrm{p}=[(18-4) /(20-4)] * 4095 \\
& =[14 / 16] * 4095 \\
& =0.875 * 4095 \\
& =3583.125=\mathrm{DFFH} \\
& \mathrm{q}=[(7-4) /(20-4)] 4095 \\
& =[3 / 16] * 4095 \\
& =0.1875 * 4095 \\
& =767.81=2 \mathrm{FFH}
\end{aligned}
$$

The data field of instructions and their responses are in hexadecimal.
Hexadecimal / decimal equivalents:

Decima 1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hex	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F

The two examples demonstrate the calculations that convert the base 16 hexadecimal numbers to decimal and vice versa.

Example 1: Hex to Decimal

Decimal $=\left(1^{\text {st }}\right.$ hex digit $\left.* 4096\right)+\left(2^{\text {nd }}\right.$ hex digit $\left.* 256\right)+\left(3^{\text {rd }}\right.$ hex digit $\left.* 16\right)+(4$ th Hex digit $)$ Where each hex digit is the actual decimal equivalent of the hex digit.

Hex in =0 F E D
Decimal Equivalent

$$
\begin{aligned}
& 13 * 1=13 \\
& 14 * 16=224 \\
& 15 * 256=2840 \\
& 0 * 4096=0
\end{aligned}
$$

4077D

Therefore, 0 FEDH $=4077 \mathrm{D}$

Example 2: Decimal to Hex
This method works by calculating the most significant hex digit first and working down to the least significant hex digit. The formula shown only works for a maximum of 4 digits. Any whole number results are converted to hex and the remainder is carried over to determine the next hex digit.

Decimal in $=4077$ D
Most significant hex digit:
$4077 / 4096<1$ therefore the most significant digit is 0 . 0???

And the remainder carried over is: $4077-(0) * 4096=4077$
$2^{\text {nd }}$ Hex digit:
$4077 / 256=15+$ Therefore the $2^{\text {nd }}$ hex digit is F
0F??
And the remainder carried over is $4077-(15) * 256=237$
$3^{\text {rd }}$ hex digit:
$237 / 16=14+$ therefore the $3^{\text {rd }}$ hex digit is E
0FE?
and the remainder carried over is $237-(14) * 16=13$
$4^{\text {th }}$ hex digit:
Therefore the least significant digit is $13=\mathrm{D}$.
0 FEDH is the hex equivalent.

The third party software vendors listed below all have drivers which will support the I/O Plexer. For further information on these companies please contact the person listed below.

86-LADDER

Wisdom Systems
1260 Iroquois Avenue
Naperville, IL 60540
(312) 505-9226

ACQUISITION ENGINE

Capital Equipment Corporation
99 South Bedford Street
Burlington, MA 01803
(617) 273-1818

* AIMAX PLUS

TA Engineering Co., Inc.
1605 School Street
P.O. Box 186

Moraga, CA 94556
(415) 376-8500

ALERT
Computer Methods Corporation
31077 Schoolcraft
Livonia, MI 48150
(313) 522-2120

CIM-PAC

Action Instruments
8601 Aero Drive
San Diego, CA 92123
(619) 279-5726

FACTORY LINK

U.S. Data

1551 Glenville Drive
Richardson, TX 75081
(241) 680-9700

Ellen Bolton

FIX

Intellution
315 Norwood Park, South
Norwood, MA 02062
(617) 769-8878

GENESIS

Iconics Inc.
132 Central, Suite 110
Foxboro, MA 02035
(508) 543-8600

HOTLINE
Industrial Control Specialists, Inc.
538 Contour Drive
Lake Charles, LA 70605
(318) 474-3163

LabTech NOTEBOOK
Laboratory Technologies Corp. 400 Research Drive
Wilmington, MA 01887
(508) 657-5400

MICRO-VIEW
Indelec
15 Boylston Place
Brookline, MA 02146
(617) 731-6234

ONSPEC
Heruistics
9845 Horn Road, MS 170
Sacramento, CA 95827
(916) 369-6606

P - CIM AFCON CONTROL AND
AUTOMATION INC.
50 E. Commerce Dr.
Schaumburg, IL 60173
(708) 490-9900

PARAGON
Intec Controls
55 West Street
Walpole, MA 02081
(508) 660-1221

PROVIEW
Microvision
50 Galesi Drive
Wayne, NJ 07470
(201) 785-0325

PEGASUS
Centaurus Software Inc.
4425 Cass Street, Suite A
San Diego, CA 92109
(619) 270-4552

R/M SCADA
Ruekert \& Mielke, Inc.
W329 N. 1812 Rockwood Dr.
Waukesha, 53188-1113
(414) 542-5733

RT-DAS
Talton/ Louley Engineering 9550 Ridgehaven Court
San Diego, CA 92123
(619) 565-6656

RTM 3500
Micro Specialty Systems, Inc.
5940 Keystone Drive
Northhampton, PA 18014
(215) 837-8004

REAL TIME EXPERT SYSTEMS
RTS American, Inc.
800 South Wells Street
Suite 1341
Chicago, IL 60607
(312) 431-3315

WONDERWARE
Wonderware Software Dev. Corp.
16 Technology Drive
Suite 154
Irvine, CA 92718
(714) 727-3200

Contact DuTec at 1-800-248-1632 if the software desired is not listed.

* This software package supports the use of Local Control Functions.

10 REM This is a demo program for the DuTec I/O Plexer
20 REM Many of the tools needed to construct GWBASIC programs to

50 REM Although this may not be the most efficient algorithm, it does
60 REM serve to demonstrate each stem in communicating with the IOP.
70 REM An IV10 analog input module must be installed in position \#1
80 REM of the IOP in order for the program to function properly. When the
90 REM analog input is varied the output to the screen should indicate
95 REM the change
100 CLS
110 DIM DIGIT\$(15)
120 GOSUB 610 : REM Initialize HEX digit array for future use.
130 INPUT "COMMUNICATION BAUDRATE=";BAUD
140 OPEN "COM1:"+STR\$(BAUD)+",N,8,1,DS,CD,CS,ASC" FOR RANDOM AS \#1

155
REM * Here to send first transmission to I/O Plexer *
REM $* ~$
ADDR $\$=$ " 80 ": REM hex address for analog functions in I/O Plexer as shipped from factory
CMD $=$ " A " REM Power up clear command for first trans. To I/O Plexer POSITION $\$=$ "": REM No position field required for power up clear GOSUB 400 : REM Build the command with the above values PRINT \#1,MSG\$: REM send the command to IOP.
200 GOSUB 890 : REM wait for the response from IOP.
IF FLAG=1 THEN GOTO 190220 REM $* * * * * * * * * * * * * * * * * * * *$
222 REM * Print the table header *
224
REM

 230 CLS
240 PRINT "RAW HEX VALUE";TAB(20);"COMPUTED INPUT VOLTS"
250 PRINT

254 REM * Here to send the request for analog data to I/O Plexer *
$256 \mathrm{REM} *$
260 ADDR $\$=$ " 80 ": REM Hex address for analog functions in I/O Plexer as shipped from
factory
270 CMD\$="L" : REM command letter to read analog inputs
272 POSITION\$="0002" : REM Positions field indicating module position \#1
280 GOSUB 400
290 PRINT \#1,MSG\$
300 GOSUB 890
305 IF FLAG=1 THEN GOTO 290
340 REM **
350 REM * Here to convert raw module HEX into decimal and print.*
360

370	HEX.ANALOG.DATA\$=MID\$(RESPONSE\$,2,4) : REM If in range get the actual data
375	TOTAL=0
380	FOR I=0 TO 15 : REM
382	IF MID\$(HEX.ANALOG.DATA\$,1,1)=DIGIT\$(I) THEN
	TOTAL=TOTAL+(I*4096) : REM MSB
384	IF MID\$(HEX.ANALOG.DATA\$,2,1)=DIGIT\$(I) THEN
	TOTAL=TOTAL+(I*256)
386	IF MID\$(HEX.ANALOG.DATA\$,3,1)=DIGIT\$(I) THEN
	TOTAL=TOTAL+(I*16)
388	IF MID\$(HEX.ANALOG.DATA\$,4,1)=DIGIT\$(I) THEN TOTAL=TOTAL+(I*1)
	: REM LSB
390	NEXT I
392	TOTAL=TOTAL-4096 : REM Adjust for range character "rxxx" in response
394	VOLTS=(TOTAL/4095)*10
396	PRINT HEX.ANALOG.DATA\$;TAB(20);VOLTS
398	GOTO 290 : REM Continue getting data and printing it out
410	REM * here to assemble message string and calculate checksum.*
415	REM Build the message
416	REM Checksum=total ASCII value of all characters
417	REM excluding the ">" such that the subtotal after adding each
418	REM character does not exceed 255. Convert checksum into hex
419	REM value, append checksumH to the command
430	MSG\$=">"+ADDR\$+CMD\$+POSITION\$
440	CHKSUM=0
450	FOR J=2 TO LEN(MSG\$)
460	CHKSUM=CHKSUM+ASC(MID\$(MSG\$,J,1))
470	IF CHKSUM>255 THEN CHKSUM=CHKSUM-256

480	NEXT J
490	GOSUB 520
500	MSG $=$ MSG ${ }^{\text {+HEXSUM }}$
510	RETURN
520	
530	REM * Here to turn CHKSUM into a hex value. *
540	REM ${ }^{* ~}$
550	HEXSUM\$=HEX\$(CHKSUM)
560	IF LEN(HEXSUM\$)<2 THEN HEXSUM\$-"0"+HEXSUM\$
600	RETURN
610	
620	REM * Here to build hex digit array.*
630	
640	DIGIT\$(0)="0"
650	DIGIT\$(1)="1"
660	DIGIT\$(2)="2"
670	DIGIT\$(3)="3"
680	DIGIT\$(4)="4"
690	DIGIT\$(5)="5"
700	DIGIT\$(6)="6"
710	DIGIT\$(7)="7"
720	DIGIT\$(8)="8"
730	DIGIT\$(9)="9"
740	DIGIT\$(10)="A"
750	DIGIT\$(11)="B"
760	DIGIT\$(12)="C"
770	DIGIT\$(13)="D"
780	DIGIT\$(14)="E"
790	DIGIT\$(F15)="F"

890 REM *

900 REM * Here to receive a response from IOP. *

920 RESPONSE $\$=$ ""':R\$="":FLAG=0
930 DELAY=1
940 T1=TIMER
950 IF LOC(1) THEN R \$ =INPUT\$(LOC(1),1):GOTO 970
960 IF TIMER-T1>DELAY THEN GOTO 990 ELSE GOTO 950
970 RESPONSE $=$ RESPONSE $\$+$ R \$
980 IF RIGHT\$(RESPONSE\$,1)=CHR\$(13) THEN RETURN ELSE GOTO 950
990 PRINT "No response from I/O Plexer-retrying":FLAG=1
1000 RETURN

DEC HEX CHAR

$33=21=$!	$80=50=\mathrm{P}$
$34=22=$ "	$81=51=\mathrm{Q}$
$35=23=\#$	$82=52=\mathrm{R}$
$36=24=\$$	$83=53=\mathrm{S}$
$37=25=\%$	$84=54=\mathrm{T}$
$38=26=\&$	$85=55=\mathrm{U}$
$39=27=$ '	$86=56=\mathrm{V}$
$40=28=($	$87=57=W$
$41=29=$)	$88=58=\mathrm{X}$
$42=2 \mathrm{~A}=*$	$89=59=Y$
$43=2 \mathrm{~B}=+$	$90=5 \mathrm{~A}=\mathrm{Z}$
$44=2 \mathrm{C}=$,	$91=5 \mathrm{~B}=[$
$45=2 \mathrm{D}=-$	$92=5 \mathrm{C}=\backslash$
$46=2 \mathrm{E}=$.	$93=5 \mathrm{D}=$]
$47=2 \mathrm{~F}=1$	$94=5 \mathrm{E}=\wedge$
$48=30=0$	$95=5 \mathrm{~F}=$
$49=31=1$	$96=60=$ '
$50=32=2$	$97=61=\mathrm{a}$
$51=33=3$	$98=62=\mathrm{b}$
$52=34=4$	$99=63=\mathrm{c}$
$53=35=5$	$100=64=\mathrm{d}$
$54=36=6$	$101=65=\mathrm{e}$
$55=37=7$	$102=66=\mathrm{f}$
$56=38=8$	$103=67=\mathrm{g}$
$57=39=9$	$104=68=\mathrm{h}$
$58=3 \mathrm{~A}=$:	$105=69=\mathrm{i}$
$59=3 \mathrm{~B}=$;	$106=6 \mathrm{~A}=\mathrm{j}$
$60=3 \mathrm{C}=<$	$107=6 \mathrm{~B}=\mathrm{k}$
$61=3 \mathrm{D}==$	$108=6 \mathrm{C}=1$
$62=3 \mathrm{E}=>$	$109=6 \mathrm{D}=\mathrm{m}$
$63=3 \mathrm{~F}=$?	$110=6 \mathrm{E}=\mathrm{n}$
$64=40=@$	$111=6 \mathrm{~F}=0$
$65=41=\mathrm{A}$	$112=70=p$
$66=42=B$	$113=71=\mathrm{q}$
$67=43=C$	$114=72=r$
$68=44=D$	$115=73=\mathrm{s}$
$69=45=\mathrm{E}$	$116=74=\mathrm{t}$
$70=46=\mathrm{F}$	$117=75=\mathrm{u}$
$71=47=\mathrm{G}$	$118=76=v$
$72=48=\mathrm{H}$	$119=77=w$
$73=49=\mathrm{I}$	$120=78=\mathrm{x}$
$74=4 \mathrm{~A}=\mathrm{J}$	$121=79=y$
$75=4 \mathrm{~B}=\mathrm{K}$	$122=7 \mathrm{~A}=\mathrm{z}$
$76=4 \mathrm{C}=\mathrm{L}$	$123=7 \mathrm{~B}=\{$
$77=4 \mathrm{D}=\mathrm{M}$	$124=7 \mathrm{C}=1$
$78=4 \mathrm{E}=\mathrm{N}$	$125=7 \mathrm{D}=\}$
$79=4 \mathrm{~F}=\mathrm{O}$	$126=7 \mathrm{E}=\sim$

First
Digit
Second Digit

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
3	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
4	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
5	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
6	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
7	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
8	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
9	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
A	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
B	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
C	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
D	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
E	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
F	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

[^0]: * Not all modules can generate this range

[^1]: Example:
 This message is "Turn pump On!"

